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Abstract 
 
The goal of this term paper is to investigate empirically the performance of GMM in estimating 
the parameters of the double exponential jump-diffusion model (DEJD) proposed by Kou (2002) 
and Ramezani & Zeng (1998). Ait-Sahalia (2003) showed that, for Merton jump-diffusion 
model, MLE is preferable to GMM in terms of efficiency. Although no similar study on DEJD 
has been found, it is reasonable to guess that similar efficiency results hold for DEJD also.  
In practical terms, however, GMM is much simpler to implement than MLE; besides, GMM 
doesn’t have the issue of the maximum likelihood function being possibly unbounded. 
In this study, we try to estimate DEJD parameters for a particular dataset via GMM / ITGMM in 
SAS. To obtain the moment conditions, MGF  and cumulant–based approaches are used.  
In either case, the results are unsatisfactory because of high correlation of sample moments used 
in GMM.  
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1. Introduction: PBJD and DEJD models 
 

 
Jump diffusion processes are processes of the form 
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Here {  is a standard Brownian motion, { is a Poisson process with  ; 0}tW t ≥ ; 0}tN t ≥
rate λ ,  constants μ and σ are the drift and volatility of the diffusion part, and the jump sizes 

are i.i.d. random variables. iY
 

tX  is used to model the log-return process as 0log( / )t tX S S=  where  is the asset price at time 
t. 

tS

 
 In the Double Exponential Jump Diffusion Model  [3]   has the double exponential density iY
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Parameters μ and σ can be interpreted as the mean and std of one-period log-returns in the 
absence of jumps. Parameter is the probability of an upward jump and p λ is the average 
number of jumps per one period in both directions. Parameters 1η  and 2η can be interpreted as 
follows: if the price change occurred instantly just because of a jump, then  
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and we can compute an average jump size in % of the “pre-jump” price tS −  as 
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Thus, an average upward jump will have a magnitude of 
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In the Pareto-Beta Jump-Diffusion (PBJD) model [2] the jump component is generated by two 
independent Poisson processes. The first process is responsible for upward jumps whose 
magnitude has the Pareto distribution, and the second process generates downward jumps whose 
magnitude has the Beta distribution. Both models have six parameters, and the parameters of one 
model can be easily recovered from the other [6]. Hence, there’s no difference between PBJD 
and DEJD from the estimation perspective. Once the model parameters are estimated, we can use 
them for derivative pricing as described in [3], [5] and [7] where the parameters are assumed 
known. 
 
 
 
 



 
2.  Estimation: GMM versus MLE 

 
Ait-Sahalia [3] provides some insight on which of the two estimation methods is preferable for 
Merton Jump-Diffusion model. It turns out that MLE is more efficient than GMM which gives us 
grounds to believe that similar efficiency results hold for DEJD model also.  

 
However, MLE has a couple of practical disadvantages compared to GMM. First, it is harder to 
implement than GMM: in [6], MLE involves estimating double improper integrals and it takes  
4-7 hours to obtain the first set of parameter estimates for 1256 observations. Second, one has to 
be careful as to the admissible region for the parameters lest the likelihood function become 
infinite [1].  

 
In this study, the plan is to estimate the model parameters for a particular underlying asset via 
GMM and then use the results to estimate the prices for a number of derivatives for that 
underlying. Then we can compare the observed and estimated derivative prices which can serve 
as empirical evidence of how good the performance of GMM is. For instance, the mispricing 
error being no greater than the derivative bid-ask spread can serve as empirical evidence that at 
least for this particular dataset GMM performance is adequate. 

 
 

3. GMM estimation: cumulant and MGF – based. 
 
Ramezani and Zeng [2] provide and explicit estimation method based on matching the first six 
cumulants for log-returns. If we use the cumulants as moment conditions in GMM we can get 
both the point estimates and standard errors for the parameters. 
 
Alternatively, one can try using the moment-generating function of tX  from [5] 
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One can set  t  = 1 and match the sample and population moments of  for a range of 1Xeθ θ  
values via GMM. 
 
 
4.  GMM for FTSE100 data 

 
To implement the plan above we start with FTSE100 index daily data for the period 04/03/06 – 
12/20/06.  
 
To get the initial values for GMM, it’s natural to apply cumulant-matching as in [2] (with 
parameters in PBJD form). It starts with solving a quadratic equation, but in this case the roots 
turn out complex which is probably caused by inaccurate estimation of higher-order cumulants. 
Still, reasonable initial values can be obtained through the physical interpretation of the 
parameters from Part1. 

 
However, iterative GMM procedure in SAS produced negative estimates for jump intensities, 
and, most importantly, it appears that three out of six moment conditions are identified by SAS 
as redundant which means that the six moment are highly correlated: 



 
 

                                 Nonlinear ITGMM Parameter Estimates 
 
                                                  Approx                  Approx 
                    Parameter       Estimate     Std Err    t Value     Pr > |t| 
 
                    mu               0.00021    0.000631    <------       Biased 
                    sigma           1.343E-6    0.000995    <------       Biased 
                    lambda_u        -1.32E-8           0    <------       Biased 
                    lambda_d        -1.91E-9           0    <------       Biased 
                    eta1            129.2029           0    <------       Biased 
                    eta2            130.7454           0    <------       Biased 
 
WARNING: The covariance across equations (the S matrix) is singular. A generalized inverse was 
computed by setting to zero the part of the S matrix for the following 3 equations whose 
residuals are linearly dependent with residuals from earlier equations: h4 h5 h6 
 
Therefore, we try an alternative way and apply GMM using MGF matching with six values of 
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⎟  is a one-period (non-log) asset return, we can match the sample moments of the 

right-hand-side to the population moments given by MGF (with parameters in DEJD form). The 
range for θ  is chosen in this particular way since it is generally acknowledged that the sample 
moments of order higher than four are poor estimates of  the corresponding population moments. 
 
This approach, however, doesn’t work either. The estimation difficulties are similar to the case 
of cumulant-matching: the moments are highly correlated which prevents convergence and the 
upward jump probability estimate turns out negative: 
 
 
                           Nonlinear 2SLS Parameter Estimates (Not Converged) 
 
                                                  Approx                  Approx 
                    Parameter       Estimate     Std Err    t Value     Pr > |t| 
 
                    mu               0.00047      0.6894       0.00       0.9995 
                    sigma            0.00825     37.1224       0.00       0.9998 
                    lambda          0.012214      2059.1       0.00       1.0000 
                    p               -0.35069      141962      -0.00       1.0000 
                    eta1            80.75856      196296       0.00       0.9997 
                    eta2            79.94541      275995       0.00       0.9998 
 
 
 
 
 
 
 
 



The sample correlation matrix computed for the six moment conditions under the initial 
parameter values is as follows: 
 
    1.0000    0.9999    0.9997   -0.9993   -0.9988   -0.9981 
    0.9999    1.0000    0.9999   -0.9996   -0.9993   -0.9988 
    0.9997    0.9999    1.0000   -0.9999   -0.9996   -0.9993 
   -0.9993   -0.9996   -0.9999    1.0000    0.9999    0.9997 
   -0.9988   -0.9993   -0.9996    0.9999    1.0000    0.9999 
   -0.9981   -0.9988   -0.9993    0.9997    0.9999    1.0000 
 
It now clear why SAS has difficulties estimating the model. The underlying cause for such a high 
correlation is that  1

11Xeθ Xθ≈ +  for small values of 1Xθ  which is indeed the case because the 
average daily log-return 1X  is close to zero. Hence, all six moment conditions in GMM become 
almost identical to each other. 
 
Ait-Sahalia [4] managed to avoid this problem by using absolute centered moments for Merton 
jump-diffusion model. However, the population absolute central moments for DEJD model are 
unknown and that approach is not available. 
 
Our next step is to try a larger time scale hoping that since an average weekly log-return is 
larger, the correlation problem may be mitigated. At the same time, one can say that according to 
the empirical results in [6], if DEJD has an edge over simpler models (Merton or plain GBM) at 
all, it is likely to be present on a scale that is no coarser than daily. The coarser the scale, the 
larger the chance that it is not necessary to include an elaborate jump component or any jump 
component, for that matter. 
 
Although for weekly data (08/05 – 12/06) cumulant-matching does not produce complex roots, 
the SAS  GMM still fails to converge: 
 
 
  
                         Nonlinear ITGMM Parameter Estimates (Not Converged) 
 
                                                  Approx                  Approx 
                    Parameter       Estimate     Std Err    t Value     Pr > |t| 
 
                    mu              0.002452     0.00168    <------       Biased 
                    sigma           0.000219    0.000019    <------       Biased 
                    lambda_u        -5.81E-9    1.011E-9    <------       Biased 
                    lambda_d        1.734E-6    0.000011    <------       Biased 
                    eta1            392.9063      0.0953    <------       Biased 
                    eta2            -77220.4           0    <------       Biased 
 
                    NOTE: The model was singular. Some estimates are marked 'Biased'. 
 
 
 
 
 
 
 
 
 



Unfortunately, MGF – based GMM produces a similar picture: 
 
                       Nonlinear 2SLS Parameter Estimates (Not Converged) 
 
                                                  Approx                  Approx 
                    Parameter       Estimate     Std Err    t Value     Pr > |t| 
 
                    mu              0.004474      0.6577    <------       Biased 
                    sigma            0.01406      4.3543    <------       Biased 
                    lambda          0.118455           0    <------       Biased 
                    p               -0.00527       274.1    <------       Biased 
                    eta1            32.01605      180436    <------       Biased 
                    eta2            50.96539     23049.6    <------       Biased 
 
                  NOTE: The model was singular. Some estimates are marked 'Biased'. 

 
The sample correlation matrix computed for the six moment conditions under the initial 
parameter values is as follows: 
 
    1.0000    0.9996    0.9983   -0.9952   -0.9916   -0.9870 
    0.9996    1.0000    0.9996   -0.9976   -0.9949   -0.9912 
    0.9983    0.9996    1.0000   -0.9992   -0.9974   -0.9947 
   -0.9952   -0.9976   -0.9992    1.0000    0.9995    0.9980 
   -0.9916   -0.9949   -0.9974    0.9995    1.0000    0.9995 
   -0.9870   -0.9912   -0.9947    0.9980    0.9995    1.0000 
 
It looks slightly better than that on a daily scale, but still SAS identifies at least one moment out 
of six as redundant in GMM and there’s no convergence. 
 
The original plan was to use the estimated parameters to price a number of European options on 
FTSE100 and then to see how large the mispricing error is, but because of failed convergence it 
doesn’t make sense. 
 
 
 
 
5. Final remarks. 

 
 

In this small study an attempt was made to avoid a computationally challenging MLE method 
and obtain reasonable parameter estimates for DEJD/PBJD model via GMM procedure that 
appeared to be a lot more straightforward.  

 
Although the attempt turned out unsuccessful, its failure is not inherent to GMM methodology 
because if one manages to specify the six moment conditions that are more orthogonal to each 
other than those used in this study, GMM is expected to produce adequate results. In the 
meantime, practitioners have to recourse to MLE [6]. 
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