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We propose and evaluate explicit tests of the null hypothesis of no difference in the accuracy of 
two competing forecasts. In contrast to previously developed tests, a wide variety of accuracy 
measures can be used (in particular, the loss function need not be quadratic and need not even 
be symmetric), and forecast errors can be non-Gaussian, nonzero mean, serially correlated, 
and contemporaneously correlated. Asymptotic and exact finite-sample tests are proposed, 
evaluated, and illustrated. 
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Prediction is of fundamental importance in all of the sci- 
ences, including economics. Forecast accuracy is of obvi- 
ous importance to users of forecasts because forecasts are 
used to guide decisions. Forecast accuracy is also of ob- 
vious importance to producers of forecasts, whose repu- 
tations (and fortunes) rise and fall with forecast accuracy. 
Comparisons of forecast accuracy are also of importance to 
economists more generally who are interested in discrim- 
inating among competing economic hypotheses (models). 
Predictive performance and model adequacy are inextrica- 
bly linked-predictive failure implies model inadequacy. 

Given the obvious desirability of a formal statistical pro- 
cedure for forecast-accuracy comparisons, one is struck by 
the casual manner in which such comparisons are typically 
carried out. The literature contains literally thousands of 
forecast-accuracy comparisons; almost without exception, 
point estimates of forecast accuracy are examined, with no 
attempt to assess their sampling uncertainty. On reflection, 
the reason for the casual approach is clear: Correlation of 
forecast errors across space and time, as well as several ad- 
ditional complications, makes formal comparison of forecast 
accuracy difficult. Dhrymes et al. (1972) and Howrey, Klein, 
and McCarthy (1974), for example, offered pessimistic as- 
sessments of the possibilities for formal testing. 

In this article we propose widely applicable tests of the null 
hypothesis of no difference in the accuracy of two competing 
forecasts. Our approach is similar in spirit to that of Vuong 
(1989) in the sense that we propose methods for measuring 
and assessing the significance of divergences between models 
and data. Our approach, however, is based directly on predic- 
tive performance, and we entertain a wide class of accuracy 
measures that users can tailor to particular decision-making 
situations. This is important because, as is well known, re- 
alistic economic loss functions frequently do not conform 
to stylized textbook favorites like mean squared predic- 
tion error (MSPE). [For example, Leitch and Tanner (1991) 

and Chinn and Meese (1991) stressed direction of change, 
Cumby and Modest (1987) stressed market and country tim- 
ing, McCulloch and Rossi (1990), and West, Edison, and 
Cho (1993) stressed utility-based criteria, and Clements and 
Hendry (1993) proposed a new accuracy measure, the gen- 
eralized forecast-error second moment.] Moreover, we allow 
for forecast errors that are potentially non-Gaussian, nonzero 
mean, serially correlated, and contemporaneously correlated. 

We proceed by detailing our test procedures in Section 1. 
Then, in Section 2, we review the small extant literature to 
provide necessary background for the finite-sample evalu- 
ation of our tests in Section 3. In Section 4 we provide an 
illustrative application, and in Section 5 we offer conclusions 
and directions for future research. 

1. TESTING EQUALITY OF FORECAST 
ACCURACY 

Consider two forecasts, {i}yir, and {rj}i,, of the time 
series {yt}L. Let the associated forecast errors be {ej,}r1 
and {ejt}rl. We wish to assess the expected loss associated 
with each of the forecasts (or its negative, accuracy). Of great 
importance, and almost always ignored, is the fact that the 
economic loss associated with a forecast may be poorly as- 
sessed by the usual statistical metrics. That is, forecasts are 
used to guide decisions, and the loss associated with a fore- 
cast error of a particular sign and size is induced directly by 
the nature of the decision problem at hand. When one consid- 
ers the variety of decisions undertaken by economic agents 
guided by forecasts (e.g., risk-hedging decisions, inventory- 
stocking decisions, policy decisions, advertising-expenditure 
decisions, public-utility rate-setting decisions, etc.), it is clear 
that the loss associated with a particular forecast error is in 
general an asymmetric function of the error and, even if sym- 
metric, certainly need not conform to stylized textbook ex- 
amples like MSPE. 
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Thus, we allow the time-t loss associated with a fore- 
cast (say i) to be an arbitrary function of the realization and 
prediction, g(y,,'it). In many applications, the loss func- 
tion will be a direct function of the forecast error; that is, 
g(y,, Y,) = g(eit). To economize on notation, we write g(eit) 
from this point on, recognizing that certain loss functions 
(like direction-of-change) do not collapse to g(eit,) form, in 
which case the full g(y,,Yt) form would be used. The null 
hypothesis of equal forecast accuracy for two forecasts is 

E[g(eit)] = E[g(ej)], or E[dt] = 0, where dt, [g(eit) - g(ejt)] 
is the loss differential. Thus, the "equal accuracy" null hy- 
pothesis is equivalent to the null hypothesis that the popula- 
tion mean of the loss-differential series is 0. 

1.1 An Asymptotic Test 

Consider a sample path {d,}1l of a loss-differential series. 
If the loss-differential series is covariance stationary and short 
memory, then standard results may be used to deduce the 
asymptotic distribution of the sample mean loss differential. 
We have 

Vi(- ,t) - N(O, 21rfd(O)), 

where 

S= T E[g(eit) - g(ejt)] 

is the sample mean loss differential, 

fd(O) = + Z E d(Tr) 
T=--00 

is the spectral density of the loss differential at frequency 0, 
yd(7) = E[(dt - lz)(d,_, - z)] is the autocovariance of the 
loss differential at displacement r, and t is the population 
mean loss differential. The formula for fd(O) shows that the 
correction for serial correlation can be substantial, even if 
the loss differential is only weakly serially correlated, due to 
cumulation of the autocovariance terms. 

Because in large samples the sample mean loss differential 
d is approximately normally distributed with mean /t and 
variance 27rfd(O)/T, the obvious large-sample N(O, 1) statistic 
for testing the null hypothesis of equal forecast accuracy is 

S 2 = 
27rfd(?) 

wherefd(0) is a consistent estimate ofAfd(0). 
Following standard practice, we obtain a consistent esti- 

mate of 2lrfd(0) by taking a weighted sum of the available 
sample autocovariances, 

27fd(0) = E 1 " S(T) r) 
r=-(T- 1) 

where 
1 T 

t=IrI+1 

1(7r/S(T)) is the lag window, and S(T) is the truncation lag. 

To motivate a choice of lag window and truncation lag 
that we have often found useful in practice, recall the fa- 
miliar result that optimal k-step-ahead forecast errors are at 
most (k - 1)-dependent. In practical applications, of course, 
(k - 1)-dependence may be violated for a variety of reasons. 
Nevertheless, it seems reasonable to take (k - 1)-dependence 
as a reasonable benchmark for a k-step-ahead forecast error 
(and the assumption may be readily assessed empirically). 
This suggests the attractiveness of the uniform, or rectangu- 
lar, lag window, defined by 

=1 for <1 
S(T) S(T) 

= 0 otherwise. 

(k - 1)-dependence implies that only (k - 1) sample autoco- 
variances need be used in the estimation of fd(O) because all 
the others are 0, so S(T) = (k - 1). This is legitimate (i.e., 
the estimator is consistent) under (k - 1)-dependence so long 
as a uniform window is used because the uniform window 
assigns unit weight to all included autocovariances. 

Because the Dirichlet spectral window associated with the 
rectangular lag window dips below 0 at certain locations, the 
resulting estimator of the spectral density function is not guar- 
anteed to be positive semidefinite. The large positive weight 
near the origin associated with the Dirichlet kernel, however, 
makes it unlikely to obtain a negative estimate offd(0). In 
applications, in the rare event that a negative estimate arises, 
we treat it as 0 and automatically reject the null hypothe- 
sis of equal forecast accuracy. If it is viewed as particularly 
important to impose nonnegativity of the estimated spectral 
density, it may be enforced by using a Bartlett lag window, 
with corresponding nonnegative Fejer spectral window, as in 
the work of Newey and West (1987), at the cost of having to 
increase the truncation lag "appropriately" with sample size. 
Other lag windows and truncation lag selection procedures 
are of course possible as well. Andrews (1991), for example, 
suggested using a quadratic spectral lag window, together 
with a "plug-in" automatic bandwidth selection procedure. 

1.2 Exact Finite-Sample Tests 

Sometimes only a few forecast-error observations are 
available in practice. One approach in such situations is 
to bootstrap our asymptotic test statistic, as done by Mark 
(1995). Ashley's (1994) work is also very much in that spirit. 
Little is known about the first-order asymptotic validity of the 
bootstrap in this situation, however, let alone higher-order 
asymptotics or actual finite-sample performance. Therefore, 
it is useful to have available exact finite-sample tests of pre- 
dictive accuracy, to complement the asymptotic test pre- 
sented previously. Two powerful such tests are based on 
the observed loss differentials (the sign test) or their ranks 
(Wilcoxon's signed-rank test). [These tests are standard, so 
our discussion is terse. See, for example, Lehmann (1975) 
for details.] 

1.2.1 The Sign Test. The null hypothesis is a zero- 
median loss differential: med(g(e,) - g(ef,)) = 0. Note that 
the null of a zero-median loss differential is not the same 
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as the null of zero difference between median losses; that 
is, med(g(ei,) - g(ejt)) med(g(ei,)) - med(g(ej,)). For that 
reason, the null differs slightly in spirit from that associated 
with our earlier discussed asymptotic test statistic S1, but it 
nevertheless has an intuitive and meaningful interpretation-- 
namely, that P(g(ei,) > g(ej,)) = P(g(ei,) < g(ej,)). 

If, however, the loss differential is symmetrically dis- 
tributed, then the null hypothesis of a zero-median loss dif- 
ferential corresponds precisely to the earlier null because 
in that case the median and mean are equal. Symmetry of 
the loss differential will obtain, for example, if the distri- 
butions of g(ei,) and g(ej,) are the same up to a location 
shift. Symmetry is ultimately an empirical matter and may be 
assessed using standard procedures. We have found roughly 
symmetric loss-differential series to be quite common in 

practice. 
The construction and intuition of a test statistic are straight- 

forward. Assuming that the loss-differential series is iid (and 
we shall relax that assumption shortly), the number of pos- 
itive loss-differential observations in a sample of size T has 
the binomial distribution with parameters T and 1 under the 
null hypothesis. The test statistic is therefore simply 

T 

S2 I+(d), 

where 
I+(d,) = 1 if dt > 0 

= 0 otherwise. 

Significance may be assessed using a table of the cumula- 
tive binomial distribution. In large samples, the studentized 
version of the sign-test statistic is standard normal: 

S2 - .5T a 
S2 = 5T N(O, 1). 

1.2.2 Wilcoxon's Signed-Rank Test. A related distri- 
bution-free procedure that requires symmetry of the loss dif- 
ferential (but can be more powerful than the sign test in that 
case) is Wilcoxon's signed-rank test. We again assume for 
the moment that the loss-differential series is iid. The test 
statistic is 

T 

S3 = ZI+(d,) rank(Id,I), 

the sum of the ranks of the absolute values of the positive 
observations. The exact finite-sample critical values of the 
test statistic are invariant to the distribution of the loss 
differential-it need be only zero-mean and symmetric-and 
have been tabulated. Moreover, its studentized version is 
asymptotically standard normal, 

S3 - T(T+I) 
S _a = 4 a N(O, 1). 

/T(T+1)(2T+I) 
24 

1.3 Discussion 

Here we highlight some of the virtues and limitations of 
our tests. First, as we have stressed repeatedly, our tests are 
valid for a very wide class of loss functions. In particular, 

the loss function need not be quadratic and need not even be 
symmetric or continuous. 

Second, a variety of realistic features of forecast errors are 
readily accommodated. The forecast errors can be nonzero- 
mean, non-Gaussian, and contemporaneously correlated. 
Allowance for contemporaneous correlation, in particular, is 
important because the forecasts being compared are forecasts 
of the same economic time series and because the informa- 
tion sets of forecasters are largely overlapping so that forecast 
errors tend to be strongly contemporaneously correlated. 

Moreover, the asymptotic test statistic S, can of course 
handle a serially correlated loss differential. This is poten- 
tially important because, as discussed earlier, even optimal 
forecast errors are serially correlated in general. Serial corre- 
lation presents more of a problem for the exact finite-sample 
test statistics S2 and S3 and their asymptotic counterparts S2a 
and S3a because the elements of the set of all possible re- 
arrangements of the sample loss differential series are not 
equally likely when the data are serially correlated, which 
violates the assumptions on which such randomization tests 
are based. Nevertheless, serial correlation may be handled 
via Bonferroni bounds, as suggested in a different context by 
Campbell and Ghysels (1995). Under the assumption that 
the forecast errors and hence the loss differential are (k - 1)- 
dependent, each of the following k sets of loss differentials 
will be free of serial correlation: {dij, i, dj, 1+kij,1+2k ,.. 
{dij,2, dij,2+k, dij,2+2k, . . .} ..... d,k, dii,k, dij,3k ,.... Thus, a 
test with size bounded by a can be obtained by performing 
k tests, each of size a/k, on each of the k loss-differential 
sequences and rejecting the null hypothesis if the null is re- 
jected for any of the k samples. Finally, it is interesting to 
note that, in multistep forecast comparisons, forecast-error 
serial correlation may be a "common feature," in the termi- 
nology of Engle and Kozicki (1993), because it is induced 
largely by the fact that the forecast horizon is longer than the 
interval at which the data are sampled and may therefore not 
be present in loss differentials even if present in the forecast 
errors themselves. This possibility can of course be checked 
empirically. 

2. EXTANT TESTS 

In this section we provide a brief description of three ex- 
isting tests of forecast accuracy that have appeared in the 
literature and will be used in our subsequent Monte Carlo 
comparison. 

2.1 The Simple F Test: A Naive Benchmark 

If (1) loss is quadratic and (2) the forecast errors are (a) zero 
mean, (b) Gaussian, (c) serially uncorrelated, or (d) contem- 
poraneously uncorrelated, then the null hypothesis of equal 
forecast accuracy corresponds to equal forecast error vari- 
ances [by (1) and (2a)], and by (2b)-(2d), the ratio of sample 
variances has the usual F distribution under the null hypoth- 
esis. More precisely, the test statistic 

F= e =ej 
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is distributed as F(T, T), where the forecast error series have 
been stacked into the (T x 1) vectors ei and ei. 

Test statistic F is of little use in practice, however, be- 
cause the conditions required to obtain its distribution are 
too restrictive. Assumption (2d) is particularly unpalatable 
for reasons discussed earlier. Its violation produces corre- 
lation between the numerator and denominator of F, which 
will not then have the F distribution. 

2.2 The Morgan-Granger-Newbold Test 

The contemporaneous correlation problem led Granger 
and Newbold (1977) to apply an orthogonalizing transfor- 
mation due to Morgan (1939-1940) that enables relaxation 
of Assumption (2d). Let x, = (ei, + ej,) and z, = (ei, - ej,), and 
let x = (e, + ej) and z = (ei - el). Then, under the maintained 
Assumptions (1) and (2a)-(2c), the null hypothesis of equal 
forecast accuracy is equivalent to zero correlation between x 
and z (i.e., p. = 0) and the test statistic 

MGN =- 

is distributed as Student's t with T - 1 df, where 

x'z 

(e.g., see Hogg and Craig 1978, pp. 300-303). 
Let us now consider relaxing the Assumptions (1) and 

(2a)-(2c) underlying the Morgan-Granger-Newbold (MGN) 
test. It is clear that the entire framework depends crucially 
on the assumption of quadratic loss (1), which cannot be 
relaxed. The remaining assumptions, however, can be weak- 
ened in varying degrees; we shall consider them in turn. 

First, it is not difficult to relax the unbiasedness Assump- 
tion (2a), while maintaining Assumptions (1), (2b), and (2c). 
Second, the normality Assumption (2b) may be relaxed, 
while maintaining (1), (2a), and (2c), at the cost of sub- 
stantial tedium involved with accounting for the higher-order 
moments that then enter the distribution of the sample correla- 
tion coefficient (e.g., see Kendall and Stuart 1979, chap. 26). 
Finally, the no-serial-correlation Assumption (2c) may be 
relaxed in addition to the no-contemporaneous-correlation 
Assumption (2d) while maintaining (1), (2a), and (2b), as 
discussed in Subsection 2.3. 

2.3 The Meese-Rogoff Test 

Under Assumptions (1), (2a), and (2b), Meese and Rogoff 
(1988) showed that 

where 7 = x'z/T, C = -7•)___o['(7)'Y (7) + %YZ(7-)Y(7)], 
-Y(7) = cov(x,,z,,), Y%(7) = cov(z,,x,_,), %,(r) = 

cov(x,, x,_,), and 'y(7) = coy(z,, z,_,). This is a well-known 
result (e.g., Priestley 1981, pp. 692-693) for the distribution 
of the sample cross-covariance function, cov(•(s), z(u)), 
specialized to a displacement of 0. 

A consistent estimator of E is 

T = Z [1 - [X] (r7(r) + '(r)7(r)], 
'=-S(T) 

where 

T 
t=-r+1 

= (-r) otherwise, 

T1 

t=r+1 

= •z(-r) otherwise, 

1T 
Sr) = - t 

1= 
4 

S= 
and the truncation lag S(T) grows with the sample size but at a 
slower rate. Alternatively, following Diebold and Rudebusch 
(1991), one may use the closely related covariance matrix 
estimator, 

S(T) 

" " Z [U(-r)?n(-r) + --r)-(r)] 
-=-S(T) 

Either way, the test statistic is 

MR = 

Under the null hypothesis and the maintained Assumptions 
(1), (2a), and (2b), MR (Meese-Rogoff) is asymptotically 
distributed as standard normal. 

It is easy to show that, if the null hypothesis and Assump- 
tions (1), (2a), (2b), and (2c) are satisfied, then all terms in E 
are 0 except -y(0) and 'y(O) so that MR coincides asymptoti- 
cally with MGN. It is interesting to note also that reformula- 
tion of the test in terms of correlation rather than covariance 
would have enabled Meese and Rogoff to dispense with the 
normality assumption because the sample autocorrelations 
are asymptotically normal even for non-Gaussian time series 
(e.g., Brockwell and Davis 1992, pp. 221-222). 

2.4 Additional Extensions 

In Subsection 2.3, we considered relaxation of Assump- 
tions (2a)-(2c), one at a time, while consistently maintaining 
Assumption (1) and consistently relaxing Assumption (2d). 
Simultaneous relaxation of multiple assumptions is possible 
within the MGN orthogonalizing transformation framework 
but much more tedious. The distribution theory required for 
joint relaxation of (2b) and (2c), for example, is complicated 
by the presence of fourth-order cumulants in the distribution 
of the the sample autocovariances, as shown, for example, by 
Hannan (1970, p. 209) and Mizrach (1991). More impor- 
tantly, however, any procedure based on the MGN orthogo- 
nalizing transformation is inextricably wed to the assumption 
of quadratic loss. 
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3. MONTE CARLO ANALYSIS 

3.1 Experimental Design 
We evaluate the finite-sample size of test statistics F, 

MGN, MR, S1, S2, S2a, S3, and S3a under the null hypoth- 
esis and various of the maintained assumptions. The design 
includes a variety of specifications of forecast-error con- 
temporaneous correlation, forecast-error serial correlation, 
and forecast-error distributions. To maintain applicability of 
all test statistics for comparison purposes, we use quadratic 
loss; that is, the null hypothesis is an equality of MSPE's. 
We emphasize again, however, that an important advantage 
of test statistics S1, S2, S2a, S3, and S3a in substantive eco- 
nomic applications-and one not shared by the others-is 
their direct applicability to analyses with nonquadratic loss 
functions. 

Consider first the case of Gaussian forecast errors. We 
draw realizations of the bivariate forecast-error process, 

{eit, ejt}11, with varying degrees of contemporaneous and 
serial correlation in the generated forecast errors. This is 
achieved in two steps. First, we build in the desired de- 

gree of contemporaneous correlation by drawing a (2 x 1) 
forecast error innovation vector u, from a bivariate standard 
normal distribution, ut, ' N(02,12), and then premultiply- 
ing by the Choleski factor of the desired contemporane- 
ous innovation correlation matrix. Let the desired correlation 
matrix be 

R = 1 pE [0, 1). 

Then the Choleski factor is 

1 0 

P vp -p ? 

Thus, the transformed (2 x 1) vector v, = Pu, , N(02, R). 
This operation is repeated T times, yielding {vi,, Vj,}l-. 

Second, (moving average) MA(1) serial correlation (with 
parameter 0) is introduced by taking 

ei, _ 1 0 Vit I.2 L Vt t=,1... T. 
ej, 0 - t. [etJ L 1+2L J 

We use Vo = 0. Multiplication by (1 + 02)-1/2 is done to keep 
the unconditional variance normalized to 1. 

We consider sample sizes of T = 8, 16, 32, 64, 128, 256, 
and 512, contemporaneous correlation parameters of p = 0, 
.5, and .9, and MA parameters of 0 = 0, .5, .9. Simple calcu- 
lations reveal that p is not only the correlation between •v and 
v, but also the correlation between the forecast errors ei and 
ei so that varying the correlation of vy and v, through [0, .9] ef- 
fectively varies the correlation of the observed forecast errors 
through the same range. 

We also consider non-Gaussian forecast errors. The design 
is the same as for the Gaussian case described previously but 
driven by fat-tailed variates (uit, u;*)' [rather than (ui,, uj,)'], 
which are independent standardized t random variables with 
6 df. The variance of a t(6) random variable is 3/2. Thus, 

standardization amounts to dividing the t(6) random variable 
by V\72. 

Throughout, we perform tests at the ac = .1 level. When 
using the exact sign and signed-rank tests, restriction of nom- 
inal size to precisely 10% is impossible (without introducing 
randomization), so we use the obtainable exact size closest 
to 10%, as specified in the tables. We perform at least 5,000 
Monte Carlo replications. The truncation lag is set at 1, re- 
flecting the fact that the experiment is designed to mimic the 
comparison of two-step-ahead forecast errors, with associ- 
ated MA(1) structure. 

3.2 Results 

Results appear in Tables 1-6, which show the empirical 
size of the various test statistics in cases of Gaussian and non- 
Gaussian forecast errors as the degree of contemporaneous 
correlation, the degree of serial correlation, and sample size 
are varied. 

Let us first discuss the case of Gaussian forecast errors. 
The results may be summarized as follows: 

1. F is correctly sized in the absence of both contemporane- 
ous and serial correlation but is missized in the presence 
of either contemporaneous or serial correlation. Serial 
correlation pushes empirical size above nominal size, but 
contemporaneous correlation pushes empirical size drasti- 
cally below nominal size. In combination, and particularly 
for large p and 0, contemporaneous correlation dominates 
and F is undersized. 

2. MGN is designed to remain unaffected by contemporane- 
ous correlation and therefore remains correctly sized so 
long as 0 = 0. Serial correlation, however, pushes empiri- 
cal size above nominal size. 

3. As expected, MR is robust to contemporaneous and serial 
correlation in large samples, but it is oversized in small 
samples in the presence of serial correlation. The asymp- 
totic distribution obtains rather quickly, however, resulting 
in approximately correct size for T > 64. 

4. The behavior of S1 is similar to that of MR. S1 is robust to 
contemporaneous and serial correlation in large samples, 
but it is oversized in small samples, with nominal and 
empirical size converging a bit more slowly than for MR. 

5. The Bonferroni bounds associated with S2 and S3 work 
well, with nominal and empirical size in close agreement 
throughout. Moreover, the asymptotics on which S2a and 
S3a depend obtain quickly. 

Now consider the case of non-Gaussian forecast errors. 
The striking and readily apparent result is that F, MGN, and 
MR are drastically missized in large as well as small samples. 
S1, S2o, and S3a, on the other hand, maintain approximately 
correct size for all but the very small sample sizes. In those 
cases, S2 and S3 continue to perform well. The results are 
well summarized by Figure 1, p. 261, which charts the de- 
pendence of F, MGN, MR, and S1 on T for the non-Gaussian 
case with p = 9 = .5. 
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Table 1. Empirical Size Under Quadratic Loss, Test Statistic F 

Gaussian Fat-tailed 

T p 8=.0 8=.5 8=.9 8=.0 8=.5 8=.9 

8 .0 9.85 12.14 14.10 14.28 15.76 17.21 
8 .5 7.02 9.49 11.42 9.61 11.64 13.02 
8 .9 .58 1.26 1.86 .57 1.13 1.79 

16 .0 9.83 12.97 14.85 16.47 18.59 19.78 
16 .5 7.30 10.11 11.89 11.14 13.55 14.94 
16 .9 .47 .99 1.55 .34 .70 1.13 

32 .0 9.88 12.68 14.34 18.06 19.55 20.35 
32 .5 6.98 9.50 11.22 21.30 21.00 21.37 
32 .9 .23 .55 1.00 .01 .07 .23 

64 .0 9.71 13.05 14.62 29.84 29.72 29.96 
64 .5 6.48 9.25 10.62 23.48 23.93 24.15 
64 .9 .16 .47 .79 .02 .12 .29 

128 .0 10.30 13.41 14.99 30.34 30.95 31.26 
128 .5 7.01 10.13 11.64 24.89 25.01 25.16 
128 .9 .16 .50 .74 .11 .44 .73 

256 .0 10.01 13.05 14.65 31.07 31.12 31.24 
256 .5 7.37 10.31 11.78 25.48 25.45 25.70 
256 .9 .19 .51 .80 .51 1.13 1.44 

512 .0 10.22 13.51 15.25 31.45 32.38 32.60 
512 .5 7.53 10.16 11.49 26.35 26.92 16.95 
512 .9 .18 .50 .85 .81 1.58 2.06 

NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 0 is the 
coefficient of the MA(1) forecast error. All tests are at the 10% level. 10,000 Monte Carlo replications are performed. 

Table 2. Empirical Size Under Quadratic Loss, Test Statistic MGN 

Gaussian Fat-tailed 

T p 8 =.0 8 =.5 0 =.9 8 =.0 8 =.5 0 =.9 

8 .0 10.19 14.14 17.94 18.10 21.89 25.65 
8 .5 9.96 14.66 18.61 16.00 20.51 24.19 
8 .9 9.75 14.53 18.67 11.76 16.31 20.00 

16 .0 10.07 14.34 17.54 20.33 24.54 27.08 
16 .5 9.56 14.37 17.95 37.15 36.18 25.66 
16 .9 10.02 14.70 18.20 12.01 16.76 19.81 

32 .0 9.89 15.04 18.00 22.94 26.32 28.72 
32 .5 10.08 15.11 17.95 20.23 23.76 26.20 
32 .9 9.59 15.32 18.25 12.75 17.78 20.54 

64 .0 10.09 15.37 17.99 24.56 28.15 30.00 
64 .5 9.95 15.18 18.15 21.10 25.18 27.28 
64 .9 10.26 15.67 18.49 12.98 18.09 20.53 

128 .0 9.96 15.09 17.59 26.47 29.50 30.94 
128 .5 10.23 15.07 17.48 23.62 26.82 28.51 
128 .9 10.11 15.05 18.05 14.34 18.89 21.56 

256 .0 10.28 15.62 18.37 27.39 30.74 32.46 
256 .5 10.60 16.02 18.44 23.81 28.38 30.31 
256 .9 10.11 15.48 17.91 14.15 19.43 22.03 

512 .0 10.12 15.34 17.68 27.64 30.55 32.14 
512 .5 10.05 14.96 17.66 24.10 27.40 29.28 
512 .9 9.90 15.09 17.53 14.78 19.16 21.49 

NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 0 is the 
coefficient of the MA(1) forecast error. All tests are at the 10% level. 10,000 Monte Carlo replications are performed. 
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Table 3. Empirical Size Under Quadratic Loss, Test Statistic MR 

Gaussian Fat-tailed 

T p 0=.0 0 =.5 0=.9 0= .0 0 =.5 0=.9 

8 .0 9.67 19.33 22.45 16.16 25.26 27.62 
8 .5 9.50 19.00 22.07 14.81 24.50 26.99 
8 .9 9.66 19.51 22.85 11.23 21.28 24.14 

16 .0 9.62 13.92 14.72 19.94 22.56 23.06 
16 .5 10.02 13.88 14.96 17.70 21.04 21.26 
16 .9 10.04 13.82 14.94 11.76 15.68 16.70 

32 .0 9.96 10.98 11.12 22.78 22.86 21.72 
32 .5 9.68 11.46 11.66 19.78 20.32 20.14 
32 .9 9.86 11.62 11.96 12.42 13.54 13.46 

64 .0 10.32 11.02 11.04 24.50 22.60 21.58 
64 .5 9.84 10.56 10.64 21.44 19.48 18.84 
64 .9 9.58 10.58 10.34 13.38 13.38 13.20 

128 .0 9.78 10.54 10.44 25.86 22.90 21.54 
128 .5 10.02 11.04 11.18 22.76 20.26 19.44 
128 .9 10.76 11.28 11.38 13.44 13.52 12.92 

256 .0 10.04 9.90 9.58 27.16 23.74 22.70 
256 .5 10.32 9.92 9.82 24.00 20.50 19.18 
256 .9 9.92 10.16 10.34 13.38 12.70 12.24 

512 .0 9.94 10.48 10.56 26.92 23.40 21.78 
512 .5 9.52 10.56 10.48 23.56 20.52 19.36 
512 .9 9.80 9.82 9.88 13.96 12.98 12.74 

NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 0 is the 
coefficient of the MA(1) forecast error. All tests are at the 10% level. At least 5,000 Monte Carlo replications are performed. 

Table 4. Empirical Size Under Quadratic Loss, Test Statistic S, 

Gaussian Fat-tailed 

T p 0= .0 0= .5 0= .9 0= .0 0= .5 0= .9 

8 .0 31.39 31.10 31.03 31.62 29.51 29.07 
8 .5 31.37 30.39 29.93 31.21 29.71 29.36 
8 .9 31.08 30.19 30.18 31.18 30.12 29.75 

16 .0 20.39 19.11 18.94 19.26 18.50 18.32 
16 .5 20.43 19.52 18.86 19.57 17.67 17.63 
16 .9 20.90 19.55 19.59 20.15 18.38 18.16 

32 .0 12.42 12.28 12.18 11.30 11.64 11.56 
32 .5 13.32 13.22 12.94 11.54 10.66 10.84 
32 .9 12.60 13.38 13.22 11.16 11.22 11.50 

64 .0 12.47 12.11 11.94 12.44 11.62 11.36 
64 .5 12.76 12.49 12.35 12.10 12.26 12.10 
64 .9 12.21 12.23 12.03 13.00 12.36 12.16 

128 .0 11.72 11.94 12.04 11.48 10.72 10.28 
128 .5 11.44 11.72 11.60 10.84 10.96 10.96 
128 .9 11.76 11.26 11.34 11.50 10.66 10.86 

256 .0 11.11 10.65 10.66 12.06 11.67 11.79 
256 .5 10.90 10.39 10.48 12.16 11.46 11.60 
256 .9 10.69 10.79 10.75 11.51 11.59 11.16 

512 .0 11.15 10.67 10.63 10.06 9.46 9.62 
512 .5 10.90 10.39 10.49 9.94 9.66 9.76 
512 .9 10.31 10.09 10.05 10.12 10.12 10.06 

NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 0 is the 
coefficient of the MA(1) forecast error. All tests are at the 10% level. At least 5,000 Monte Carlo replications are performed. 
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Table 5. Empirical Size Under Quadratic Loss, Test Statistics S2 and S2a 

Gaussian Fat-tailed 

T p 0=.0 0=.5 0=.9 0=.0 0 = .5 0=.9 

S2, nominal size = 25% 

8 .0 22.24 22.48 22.38 23.94 23.46 23.34 
8 .5 22.14 23.46 22.16 23.08 24.80 23.06 
8 .9 22.24 23.02 22.66 22.92 23.26 22.86 

S2, nominal size = 14.08% 

16 .0 13.46 13.26 13.14 13.62 13.06 13.76 
16 .5 14.22 13.46 12.92 13.70 13.24 13.62 
16 .9 13.08 13.84 13.28 12.86 13.06 13.20 

S2, nominal size = 15.36% 

32 .0 14.36 14.52 14.28 14.54 14.32 14.30 
32 .5 14.36 14.06 13.94 15.08 14.36 15.02 
32 .9 14.68 14.62 13.46 14.94 14.76 14.52 

S2a, nominal size = 10% 

64 .0 9.72 9.92 9.42 9.68 10.36 10.44 
64 .5 9.66 10.34 9.68 9.52 10.06 10.00 
64 .9 10.84 9.46 10.34 9.40 8.98 10.02 

S2a, nominal size = 10% 

128 .0 11.62 11.62 11.84 12.22 12.20 11.42 
128 .5 11.66 11.62 11.90 12.06 11.94 11.44 
128 .9 11.22 11.72 11.28 12.06 10.76 11.40 

NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 0 is the 
coefficient of the MA(1) forecast error. At least 5,000 Monte Carlo replications are performed. 

Table 6. Empirical Size Under Quadratic Loss, Test Statistics S3 and S, 

Gaussian Fat-tailed 

T p 9=.0 0=.5 0=.9 0=.0 0=.5 0=.9 

S3, nominal size = 25% 

8 .0 22.50 22.92 22.90 23.26 23.34 21.96 
8 .5 22.98 22.26 23.06 23.42 23.86 22.88 
8 .9 23.16 22.36 24.24 24.26 23.32 23.34 

S3, nominal size = 10.92% 

16 .0 10.62 10.06 10.40 10.16 10.42 9.84 
16 .5 10.38 10.92 10.32 10.54 10.94 10.34 
16 .9 10.64 10.18 9.62 10.58 10.96 10.64 

S3, nominal size = 10.12% 

32 .0 10.72 10.28 9.30 9.90 10.00 9.98 
32 .5 10.56 10.00 10.02 10.40 10.64 10.30 
32 .9 10.92 10.44 10.30 10.46 9.96 10.70 

S3a, nominal size = 10% 

64 .0 9.38 9.54 9.16 9.64 9.24 8.84 
64 .5 9.80 10.02 9.66 9.58 8.82 8.78 
64 .9 9.90 9.24 9.68 9.92 9.78 10.00 

S3a, nominal size = 10% 

128 .0 9.94 9.70 9.12 9.82 9.04 8.46 
128 .5 9.52 10.00 9.32 10.08 9.24 9.20 
128 .9 9.46 9.64 9.42 9.28 9.22 9.26 

NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 0 is the 
coefficient of the MA(1) forecast error. At least 5,000 Monte Carlo replications are performed. 
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Figure 1. Empirical Size, Four Test Statistics: Fat-Tailed Case; 
Theta = Rho = .5. 

4. AN EMPIRICAL EXAMPLE 

We shall illustrate the practical use of the tests with an 
application to exchange-rate forecasting. The series to be 
forecast, measured monthly, is the three-month change in the 
nominal dollar/Dutch guilder end-of-month spot exchange 
rate (in U.S. cents, noon, New York interbank), from 1977.01 
to 1991.12. We assess two forecasts, the "no change" (0) 
forecast associated with a random-walk model and the fore- 
cast implicit in the three-month forward rate (the difference 
between the three-month forward rate and the spot rate). 

The actual and predicted changes are shown in Figure 2. 
The random-walk forecast, of course, is just constant at 0, 
whereas the forward market forecast moves over time. The 
movements in both forecasts, however, are dwarfed by the 
realized movements in exchange rates. 

We shall assess the forecasts' accuracy under absolute error 
loss. In terms of point estimates, the random-walk forecast is 
more accurate. The mean absolute error of the random-walk 
forecast is 1.42, as opposed to 1.53 for the forward market 
forecast; as one hears so often, "The random walk wins." The 
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Figure 2. Actual and Predicted Exchange-Rate Changes. The 
solid line is the actual exchange-rate change. The short dashed line 
is the predicted change from the random-walk model, and the long 
dashed line is the predicted change implied by the forward rate. 
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Figure 3. Loss Differential (forward--random walk). 

loss-differential series is shown in Figure 3, in which no ob- 
vious nonstationarities are visually apparently. Approximate 
stationarity is also supported by the sample autocorrelation 
function of the loss differential, shown in Figure 4, which 
decays quickly. 

Because the forecasts are three-step-ahead, our earlier ar- 
guments suggest the need to allow for at least two-dependent 
forecast errors, which may translate into a two-dependent 
loss differential. This intuition is confirmed by the sample 
autocorrelation function of the loss differential, in which siz- 
able and significant sample autocorrelations appear at lags 1 
and 2 and nowhere else. The Box-Pierce X2 test of jointly 
zero autocorrelations at lags 1 through 15 is 51.12, which 
is highly significant relative to its asymptotic null distribu- 
tion of X'5. Conversely, the Box-Pierce X2 test of jointly 
zero autocorrelations at lags 3 through 15 is 12.79, which is 
insignificant relative to its null distribution of x'. 

We now proceed to test the null of equal expected loss. F, 
MGN, and MR are inapplicable because one or more of their 
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Figure 4. Loss Differential Autocorrelations. The first eight sam- 

ple autocorrelations are graphed, together with Bartlett's approximate 
95% confidence interval. 
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maintained assumptions are explicitly violated. We therefore 
focus on our test statistic S1, setting the truncation lag at two 
in light of the preceding discussion. We obtain S1 = -1.3, 
implying a p value of .19. Thus, for the sample at hand, we 
do not reject at conventional levels the hypothesis of equal 
expected absolute error-the forward rate is not a statistically 
significantly worse predictor of the future spot rate than is the 
current spot rate. 

5. CONCLUSIONS AND DIRECTIONS FOR 
FUTURE RESEARCH 

We have proposed several tests of the null hypothesis of 
equal forecast accuracy. We allow the forecast errors to be 
non-Gaussian, nonzero mean, serially correlated, and con- 
temporaneously correlated. Perhaps most importantly, our 
tests are applicable under a very wide variety of loss struc- 
tures. 

We hasten to add that comparison of forecast accuracy is 
but one of many diagnostics that should be examined when 
comparing models. Moreover, the superiority of a particu- 
lar model in terms of forecast accuracy does not necessarily 
imply that forecasts from other models contain no additional 
information. That, of course, is the well-known message of 
the forecast combination and encompassing literatures; see, 
for example, Clemen (1989), Chong and Hendry (1986), and 
Fair and Shiller (1990). 

Several extensions of the results presented here appear to 
be promising directions for future research. Some are obvi- 
ous, such as generalization to comparison of more than two 
forecasts or, perhaps most generally, multiple forecasts for 
each of multiple variables. Others are less obvious and more 
interesting. We shall list just a few: 

1. Our framework may be broadened to examine not only 
whether forecast loss differentials have nonzero mean but 
also whether other variables may explain loss differen- 
tials. For example, one could regress the loss differential 
not only on a constant but also on a "stage of the busi- 
ness cycle" indicator to assess the extent to which relative 
predictive performance differs over the cycle. 

2. The ability to formally compare predictive accuracy 
afforded by our tests may prove useful as a model- 
specification diagnostic, as well as a means to test 
both nested and nonnested hypotheses under nonstan- 
dard conditions, in the tradition of Ashley, Granger, and 
Schmalensee (1980) and Mariano and Brown (1983). 

3. Explicit account may be taken of the effects of uncertainty 
associated with estimated model parameters on the behav- 
ior of the test statistics, as shown by West (1994). 

Let us provide some examples of the ideas sketched in 2. 
First, consider the development of a test of exclusion re- 
strictions in time series regression that is valid regardless 
of whether the data are stationary or cointegrated. The de- 
sirability of such a test is apparent from works like those 
of Stock and Watson (1989), Christiano and Eichenbaum 
(1990), Rudebusch (1993), and Toda and Phillips (1993), in 
which it is simultaneously apparent that (a) it is difficult to 

determine reliably the integration status of macroeconomic 
time series and (b) the conclusions ofmacroeconometric stud- 
ies are often critically dependent on the integration status of 
the relevant time series. One may proceed by noting that 
tests of exclusion restrictions amount to comparisons of re- 
stricted and unrestricted sums of squares. This suggests es- 
timating the restricted and unrestricted models using part of 
the available data and then using our test of equality of the 
mean squared errors of the respective one-step-ahead fore- 
casts. 

As a second example, it would appear that our test is ap- 
plicable in nonstandard testing situations, such as when a 
nuisance parameter is not identified under the null. This oc- 
curs, for example, when testing for the appropriate number 
of states in Hamilton's (1989) Markov-switching model. In 
spite of the fact that standard tests are inapplicable, certainly 
the null and alternative models may be estimated and their 
out-of-sample forecasting performance compared rigorously, 
as shown by Engel (1994). 

In closing, we note that this article is part of a larger re- 
search program aimed at doing model selection, estimation, 
prediction, and evaluation using the relevant loss function, 
whatever that loss function may be. This article has addressed 
evaluation. Granger (1969) and Christoffersen and Diebold 
(1994) addressed prediction. These results, together with 
those of Weiss and Andersen (1984) and Weiss (1991, 1994) 
on estimation under the relevant loss function will make fea- 
sible recursive, real-time, prediction-based model selection 
under the relevant loss function. 
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