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Abstract

This paper considers the problem of testing s null hypotheses simultaneously while con-

trolling the false discovery rate (FDR). Benjamini and Hochberg (1995) provide a method

for controlling the FDR based on p-values for each of the null hypotheses under the as-

sumption that the p-values are independent. Subsequent research has since shown that

this procedure is valid under weaker assumptions on the joint distribution of the p-values.

Related procedures that are valid under no assumptions on the joint distribution of the

p-values have also been developed. None of these procedures, however, incorporate infor-

mation about the dependence structure of the test statistics. This paper develops methods

for control of the FDR under weak assumptions that incorporate such information and, by

doing so, are better able to detect false null hypotheses. We illustrate this property via a

simulation study and two empirical applications. In particular, the bootstrap method is

competitive with methods that require independence if independence holds, but it outper-

forms these methods under dependence.
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1 Introduction

Consider the problem of testing s null hypotheses simultaneously. A classical approach to

dealing with the multiplicity problem is to restrict attention to procedures that control the

probability of one or more false rejections, which is called the familywise error rate (FWER).

When s is large, however, the ability of such procedures to detect false null hypotheses is

limited. For this reason it is often preferred in such situations to relax control of the FWER

in exchange for improved ability to detect false null hypotheses.

To this end, several ways of relaxing the FWER have been proposed. Hommel and Hoffman

(1988) and Lehmann and Romano (2005a) consider control of the probability of k or more

false rejections for some integer k ≥ 1, which is termed the k-FWER. Obviously, controlling

the 1-FWER is the same as controlling the usual FWER. Lehmann and Romano (2005a) also

consider control of the false discovery proportion (FDP), defined to be the fraction of rejections

that are false rejections (with the fraction understood to be 0 in the case of no rejections).

Given a user-specified value of γ, control of the FDP means control of the probability that the

FDP is greater than γ. Note that when γ = 0 control of the FDP reduces to control of the

usual FWER. Methods for control of the k-FWER and the FDP based on p-values for each null

hypothesis are discussed in Lehmann and Romano (2005a), Romano and Shaikh (2006a), and

Romano and Shaikh (2006b). These methods are valid under weak or no assumptions on the

dependence structure of the p-values, but they do not attempt to incorporate information about

the dependence structure of the test statistics. Methods that incorporate such information and

are thus better able to detect false null hypotheses are described in van der Laan et al. (2004),

Romano and Wolf (2007), and Romano et al. (2008).

A popular third alternative to control of the FWER is control of the false discovery rate

(FDR), defined to be the expected value of the FDP. Control of the FDR has been suggested
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in a wide area of applications, such as educational evaluation (Williams et al., 1999), clinical

trials (Mehrotra and Heyse, 2004), analysis of microarray data (Drigalenko and Elston, 1997;

and Reiner et al., 2003), model selection (Abramovich and Benjamini, 1996; and Abramovich

et al., 2006), and plant breeding (Basford and Tukey, 1997). Benjamini and Hochberg (1995)

provide a method for controlling the FDR based on p-values for each null hypothesis under the

assumption that the p-values are independent. Subsequent research has since shown that this

procedure remains valid under weaker assumptions on the joint distribution of the p-values.

Related procedures that are valid under no assumptions on the joint distribution of the p-values

have also been developed; see Benjamini and Yekutieli (2001). Yet procedures for control of the

FDR under weak assumptions that incorporate information about the dependence structure

of the test statistics remain unavailable. This paper seeks to develop methods for control of

the FDR that incorporate such information and, by doing so, are better able to detect false

null hypotheses.

The remainder of the paper is organized as follows. In Section 2 we describe our notation

and setup. Section 3 summarizes previous research on methods for control of the FDR. In Sec-

tion 4 we provide some motivation for our methods for control of the FDR. A bootstrap-based

method is then developed in Section 5. The asymptotic validity of this approach relies upon an

exchangeability assumption, but in Section 6 we develop a subsampling-based approach whose

asymptotic validity does not depend on such an assumption. Section 7 sheds some light on the

finite-sample performance of our methods and some previous proposals via simulations. We

also provide two empirical applications in Section 8 to further compare the various methods.

Section 9 concludes.

2 Setup and Notation

A formal description of our setup is as follows. Suppose data X = (X1, . . . ,Xn) is available

from some probability distribution P ∈ Ω. Note that we make no rigid requirements for Ω; it

may be a parametric, semiparametric or a nonparametric model. A general hypothesis H may

be viewed as a subset ω of Ω. In this paper we consider the problem of simultaneously testing

null hypotheses Hi : P ∈ ωi, i = 1, . . . , s on the basis of X. The alternative hypotheses are

understood to be H ′
i : P 6∈ ωi, i = 1, . . . , s.

We assume that test statistics Tn,i, i = 1, . . . , s are available for testing Hi, i = 1, . . . , s.

Large values of Tn,i are understood to indicate evidence against Hi. Note that we may take

Tn,i = −p̂n,i, where p̂n,i is a p-value for Hi. A p-value for Hi may be exact, in which case p̂n,i
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satisfies

P{p̂n,i ≤ u} ≤ u for any u ∈ (0, 1) and P ∈ ωi (1)

or asymptotic, in which case

lim sup
n→∞

P{p̂n,i ≤ u} ≤ u for any u ∈ (0, 1) and P ∈ ωi . (2)

In this article, we consider stepdown multiple testing procedures. Let

Tn,(1) ≤ · · · ≤ Tn,(s)

denote the ordered test statistics (from smallest to largest) and let

H(1), . . . ,H(s)

denote the corresponding null hypotheses. Stepdown multiple testing procedures first compare

the most significant test statistic, Tn,(s), with a suitable critical value cs. If Tn,(s) < cs, then

the procedure rejects no null hypotheses; otherwise, the procedure rejects H(s) and then ‘steps

down’ to the second most significant null hypothesis H(s−1). If Tn,(s−1) < cs−1, then the

procedure rejects no further null hypotheses; otherwise, the procedure rejects H(s−1) and then

‘steps down’ to the third most significant null hypothesis H(s−2). The procedure continues

in this fashion until either one rejects H(1) or one does not reject the null hypothesis under

consideration. More succinctly, a stepdown multiple testing procedure rejects

H(s), . . . ,H(s−j∗) ,

where j∗ is the largest integer j that satisfies

Tn,(s) ≥ cs, . . . , Tn,(s−j) ≥ cs−j ;

if no such j exits, the procedure does not reject any null hypotheses.

We will construct stepdown multiple testing procedures that control the false discovery

rate (FDR), which is defined to be the expected value of the false discovery proportion (FDP).

Denote by I(P ) the set of indices corresponding to true null hypotheses; that is,

I(P ) = {1 ≤ i ≤ s : P ∈ ωi} . (3)

For a given multiple testing procedure, let F denote the number of false rejections and let R

denote the total number of rejections; that is,

F = |{1 ≤ i ≤ s : Hi rejected and i ∈ I(P )}|

R = |{1 ≤ i ≤ s : Hi rejected }| .
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Then, the false discovery proportion (FDP) is defined as follows:

FDP =
F

max{R, 1} .

Using this notation, the FDR is simply E[FDP]. A multiple testing procedure is said to control

the FDR at level α if

FDRP = EP [FDP] ≤ α for all P ∈ Ω .

A multiple testing procedure is said to control the FDR asymptotically at level α if

lim sup
n→∞

FDRP ≤ α for all P ∈ Ω . (4)

We will say that a procedure is asymptotically valid if it satisfies (4). Methods that control

the FDR can typically only be derived in special circumstances. In this paper, we will instead

pursue procedures that are asymptotically valid under weak assumptions.

3 Previous Methods for Control of the FDR

In this section, we summarize the existing literature on methods for control of the FDR. The

first known method proposed for control of the FDR is the stepwise procedure of Benjamini

and Hochberg (1995) based on p-values for each null hypothesis. Let

p̂n,(1) ≤ · · · ≤ p̂n,(s)

denote the ordered values of the p-values and let

H(1), . . . ,H(s)

denote the corresponding null hypotheses. Note that in this case the null hypotheses are ordered

from most significant to least significant, since small values of p̂n,i are taken to indicate evidence

against Hi. For 1 ≤ j ≤ s, let

αj =
j

s
α . (5)

Then, the method of Benjamini and Hochberg (1995) rejects null hypotheses H(1), . . . ,H(j∗),

where j∗ is the largest j such that

p̂n,(j) ≤ αj .

Of course, if no such j exists, then the procedure rejects no null hypotheses.

Benjamini and Hochberg (1995) prove that their method controls the FDR at level α

if the p-values satisfy (1) and are independent. Benjamini and Yekutieli (2001) show that
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independence can be replaced by a weaker condition known as positive regression dependency;

see their paper for the exact definition. It can also be shown that the method of Benjamini

and Hochberg (1995) provides asymptotic control of the FDR at level α if the p-values satisfy

(2) instead of (1) and this weaker dependence condition holds.

On the other hand, the method of Benjamini and Hochberg (1995) fails to control the FDR

at level α when the p-values only satisfy (1). Benjamini and Yekutieli (2001) show that control

of the FDR can be achieved under only (1) if αj defined in (5) are replaced by

αj =
j

s

α

Cs
,

where Ck =
∑k

r=1
1
r . Note that Cs ≈ log(s) + 0.5, so this method can have much less power

than the method of Benjamini and Hochberg (1995). For example, when s = 1, 000, then

Cs = 7.49. As before, it can be shown that this procedure provides asymptotic control of the

FDR at level α if the p-values satisfy (2) instead of (1).

Even when sufficient conditions for the method of Benjamini and Hochberg (1995) to control

the FDR hold, it is conservative in the following sense. It can be shown that

FDRP ≤ s0

s
α ,

where s0 = |I(P )|. So, unless s0 = s, the power of the procedure could be improved by

replacing the αj defined in (5) by

αj =
j

s0
α .

Of course, s0 is unknown in practice, but there exist several approaches in the literature to

estimate s0. For example, Storey et al. (2004) suggest the following estimator:

ŝ0 =
#{p̂n,j > λ} + 1

1 − λ
, (6)

where λ ∈ (0, 1) is a user-specified parameter. The reasoning behind this estimator is the

following. As long as each test has reasonable power, then most of the “large” p-values should

correspond to true null hypotheses. Therefore, one would expect about s0(1−λ) of the p-values

to lie in the interval (λ, 1], assuming that the p-values corresponding to the true null hypotheses

have approximately a uniform [0, 1] distribution. Adding one in the numerator of (6) is a small-

sample adjustment to make the procedure slightly more conservative and to avoid an estimator

of zero for s0. Having estimated s0, one then applies the procedure of Benjamini and Hochberg

(1995) with the αj defined in (5) replaced by

α̂j =
j

ŝ0
α .
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Storey et al. (2004) prove that this adaptive procedure controls the FDR asymptotically when-

ever the p-values satisfy (2) and a weak dependence condition holds. This condition includes

independence, dependence within blocks, and mixing-type situations, but, unlike Benjamini

and Yekutieli (2001), it does not allow for arbitrary dependence among the p-values. It ex-

cludes, for example, the case in which there is a constant correlation across all p-values. Related

work is found in Genovese and Wasserman (2004) and Benjamini and Hochberg (2000).

The adaptive procedure of Storey et al. (2004) can be quite liberal under positive depen-

dence, such as in a scenario with constant positive correlation. For this reason, Benjamini

et al. (2006) develop an alternative procedure, which works as follows:

Algorithm 3.1 (BKY Algorithm)

1. Apply the procedure of Benjamini and Hochberg (1995) at nominal level α∗ = α/(1+α).

Let r be the number of rejected hypotheses. If r = 0, then do not reject any hypothesis

and stop; if r = s, then reject all s hypotheses and stop; otherwise continue.

2. Apply the procedure of Benjamini and Hochberg (1995) with the αj defined in (5) re-

placed by α̂j = j
ŝ0

α∗, where ŝ0 = s − r.

Benjamini et al. (2006) prove that this procedure controls the FDR whenever the p-values

satisfy (2) and are independent of each other. They also provide simulations which suggest

that this procedure continues to control the FDR under positive dependence.

Benjamini and Liu (1999) provide a stepdown method for control of the FDR based on

p-values for each null hypothesis that satisfy (1) and are independent. Sarkar (2002) extends

the results of Benjamini and Hochberg (1995), Benjamini and Liu (1999), and Benjamini and

Yekutieli (2001) to generalized stepup-stepdown procedures, yet the methods he considers,

like those described above, do not incorporate the information about the dependence structure

of the test statistics. In the following sections, we develop multiple testing procedures for

asymptotic control of the FDR under weak assumptions that incorporate such information,

and, by doing so, are better able to detect false hypotheses. Our procedures build upon the

work of Troendle (2000), who suggests a procedure for asymptotic control of the FDR that

incorporates information about the dependence structure of the test statistics, but relies upon

the restrictive parametric assumption that the joint distribution of the test statistics is given by

a symmetric multivariate t-distribution. Yekutieli and Benjamini (1999) also provide a method

for asymptotic control of the FDR that exploits information about the dependence structure

of the test statistics to improve the ability to detect false null hypotheses, but their analysis
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requires subset pivotality and that the test statistics corresponding to true null hypotheses are

independent of those corresponding to false null hypotheses. Although our analysis will require

neither of these restrictive assumptions, the asymptotic validity of our bootstrap approach

will rely upon an exchangeability assumption. The subsampling approach we will develop

subsequently, however, will not even require this restriction.

4 Motivation for Methods

In order to motivate our procedures, first note that for any stepdown procedure based on

critical values c1, . . . cs we have that

FDRP = EP [
F

max{R, 1} ] =
∑

1≤r≤s

1

r
EP [F |R = r]P{R = r}

=
∑

1≤r≤s

1

r
E[F |R = r]P{Tn,(s) ≥ cs, . . . , Tn,(s−r+1) ≥ cs−r+1, Tn,(s−r) < cs−r} ,

where the event Tn,s−r < cs−r is understood to be vacuously true when r = s. As before,

let s0 = |I(P )| and assume without loss of generality that I(P ) = {1, . . . , s0}. Under weak

assumptions, we will show that all false hypotheses will be rejected with probability tending

to one. For the time being, assume that this is the case. Let Tn,r:t denote the rth largest of

the t test statistics Tn,1, . . . , Tn,t; in particular, when t = s0, Tn,r:s0
denotes the rth largest of

the test statistics corresponding to the true hypotheses. Then, with probability approaching

one, we have that

FDRP =
∑

s−s0+1≤r≤s

r − s + s0

r
P{Tn,s0:s0

≥ cs0
, . . . , Tn,s−r+1:s0

≥ cs−r+1, Tn,s−r:s0
< cs−r} ,

(7)

where the event Tn,s−r:s0
< cs−r is again understood to be vacuously true when r = s.

Our goal is to ensure that (7) is bounded above by α for any P , at least asymptotically.

To this end, first consider any P such that s0 = |I(P )| = 1. Then, (7) is simply

FDRP =
1

s
P{Tn,1:1 ≥ c1} . (8)

A suitable choice of c1 is thus the smallest value for which (8) is bounded above by α; that is,

c1 = inf{x ∈ R :
1

s
P{Tn,1:1 ≥ x} ≤ α} .

Note that if sα ≥ 1, then c1 so defined is equal to −∞.
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Having determined c1, now consider any P such that s0 = 2. Then, (7) is simply

1

s − 1
P{Tn,2:2 ≥ c2, Tn,1:2 < c1} +

2

s
P{Tn,2:2 ≥ c2, Tn,1:2 ≥ c1} . (9)

A suitable choice of c2 is therefore the smallest value for which (9) is bounded above by α.

In general, having determined c1, . . . , cj−1, the jth critical value may be determined by

considering P such that s0 = j. In this case, (7) is simply

FDRP =
∑

s−j+1≤r≤s

r − s + j

r
P{Tn,j:j ≥ cj , . . . , Tn,s−r+1:j ≥ cs−r+1, Tn,s−r:j < cs−r} . (10)

An appropriate choice of cj is thus the smallest value for which (10) is bounded above by α.

Note that when j = s, (10) simplifies to

P{Tn,s:s ≥ cs} ,

so equivalently

cs = inf{x ∈ R : P{Tn,s:s ≥ x} ≤ α} .

Of course, the above choice of critical values is infeasible since it depends on the unknown P

through the distribution of the test statistics. We therefore focus on feasible constructions of

the critical values based on the bootstrap and subsampling.

5 A Bootstrap Approach

In this section, we specialize our framework to the case in which interest focuses on a parameter

vector

θ(P ) = (θ1(P ), . . . , θs(P )) .

The null hypotheses may be one-sided, in which case

Hj : θj ≤ θ0,j vs. H ′
j : θj > θ0,j (11)

or the null hypotheses may be two-sided, in which case

Hj : θj = θ0,j vs. H ′
j : θj 6= θ0,j . (12)

In the next section, however, we will return to more general null hypotheses. Test statistics

will be based on an estimate θ̂n = (θ̂n,1, . . . , θ̂n,s) of θ(P ) computed using the data X. We will

consider ‘studentized’ test statistics

Tn,j =
√

n(θ̂n,j − θ0,j)/σ̂n,j (13)
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for the one-sided case (11) or

Tn,j =
√

n|θ̂n,j − θ0,j|/σ̂n,j (14)

for the two-sided case (12). Note that σ̂n,j may either be identically equal to 1 or an estimate

of the standard deviation of
√

n(θ̂n,j −θ0,j) or
√

n|θ̂n,j −θ0,j|. This is done to keep the notation

compact; the latter is preferable from our point of view but may not always be available in

practice.

Recall that the construction of critical values in the preceding section was infeasible because

of its dependence on the unknown P . For the bootstrap construction, we therefore simply

replace the unknown P with a suitable estimate P̂n. To this end, let X∗ = (X∗
1 , . . . ,X∗

n) be

distributed according to P̂n and denote by T ∗
n,j, j = 1, . . . , s test statistics computed from X∗.

For example, if Tn,j is defined by (13) or (14), then

T ∗
n,j =

√
n(θ̂∗n,j − θj(P̂n))/σ̂∗

n,j (15)

or

T ∗
n,j =

√
n|θ̂∗n,j − θj(P̂n)|/σ̂∗

n,j , (16)

respectively, where θ̂∗n,j is an estimate of θ̂n,j computed from X∗ and σ̂∗
n,j is either identically

equal to 1 or an estimate of the standard deviation of
√

n(θ̂∗n,j−θ̂n,j) or
√

n|θ̂∗n,j−θ̂n,j| computed

from X∗. For the validity of this approach, we require that the distribution of T ∗
n,j provides a

good approximation to the distribution of Tn,j whenever the corresponding null hypothesis Hj

is true, but, unlike Westfall and Young (1993), we do not require subset pivotality. The exact

choice of P̂n will, of course, depend on nature of the data. If the data X = (X1, . . . ,Xn) are

i.i.d., then a suitable choice of P̂n is the empirical distribution, as in Efron (1979). If, on the

other hand, the data constitute a time series, then P̂n should be estimated using a suitable

time series bootstrap method; see Lahiri (2003) for details.

Given a choice of P̂n, define the critical values recursively as follows: having determined

ĉn,1, . . . , ĉn,j−1, compute ĉn,j according to the rule

ĉn,j = inf{c ∈ R :
∑

s−j+1≤r≤s

r − s + j

r
P̂n{T ∗

n,j:j ≥ c,

. . . , T ∗
n,s−r+1:j ≥ ĉn,s−r+1, T

∗
n,s−r:j < ĉn,s−r} ≤ α} . (17)

Remark 5.1 It is important to be clear about the meaning of the notation T ∗
n,r:t, with r ≤ t,

in (17). By analogy to the “real” world, it should denote the rth smallest of the observations

corresponding to the first t true null hypotheses. However, the ordering of the true null
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hypotheses in the bootstrap world is not 1, 2, . . . , s, but it is instead determined by the ordering

H(1), . . . ,H(s) from the real world. So if the permutation {k1, . . . , ks} of {1, . . . , s} is defined

such that Hk1
= H(1), . . . ,Hks

= H(s), then T ∗
n,r:t is the rth smallest of the observations

T ∗
n,k1

, . . . , T ∗
n,kt

.

Remark 5.2 Note that typically it will not be possible to compute closed form expressions

for the probabilities under P̂n required in (17). In such cases, the required probabilities may

instead be computed using simulation to any desired degree of accuracy.

We now provide conditions under which the stepdown procedure with critical values defined

by (17) satisfies (4). The following result applies to the case of two-sided null hypotheses, but

the one-sided case can be handled using a similar argument. In order to state the result, we will

require some further notation. For K ⊆ {1, . . . , s}, let Jn,K(P ) denote the joint distribution of

(
√

n(θ̂n,j − θj(P ))/σ̂n,j : j ∈ K) .

It will also be useful to define the quantile function corresponding to a c.d.f. G(·) on R as

G−1(α) = inf{x ∈ R : G(x) ≥ α}.

Theorem 5.1 Consider the problem of testing the null hypotheses Hi, i = 1, . . . , s given

by (12) using test statistics Tn,i, i = 1, . . . , s defined by (14). Suppose that Jn,{1,...,s}(P ) con-

verges weakly to a limit law J{1,...,s}(P ), so that Jn,I(P )(P ) converges weakly to a limit law

Jn,I(P )(P ). Suppose further that JI(P )(P )

(i) has continuous one-dimensinal marginal distributions;

(ii) has connected support, which is denoted by supp(JI(P )(P ));

(iii) is exchangeable.

Also, assume

σ̂n,j
P→ σj(P ) ,

where σj(P ) > 0 is nonrandom. Let P̂n be an estimate of P such that

ρ(Jn,{1,...,s}(P ), Jn,{1,...,s}(P̂n))
P→ 0 , (18)

where ρ is any metric metrizing weak convergence in R
s.

Then, for the stepdown method with critical values defined by (17)

lim sup
n→∞

FDRP ≤ α .
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We will make use of the following lemma in our proof of the preceding theorem:

Lemma 5.1 Let X be a random vector on R
s with distribution P . Define f : R

s → R by the

rule f(x) = x(k) for some fixed 1 ≤ k ≤ s, where

x(1) ≤ · · · ≤ x(s) .

Suppose that (i) the one-dimensional marginal distributions of P have continuous c.d.f.s and

(ii) supp(X) is connected. Then, f(X) has a continuous and strictly increasing c.d.f.

Proof: To see that the c.d.f. of f(X) is continuous, simply note that

P{f(X) = x} ≤
∑

1≤i≤s

P{Xi = x} = 0 ,

where the final equality follows from assumption (i). To see that the c.d.f. of f(X) is strictly

increasing, suppose by way of contradiction that there exists a < b such that P{f(X) ∈
(a, b)} = 0, but P{f(X) ≤ a} > 0 and P{f(X) ≥ b} > 0. Thus, there exists x ∈ supp(X)

such that f(x) ≤ a and x′ ∈ supp(X) such that f(x′) ≥ b. Consider the set

Aa,b = {x ∈ supp(X) : a < f(x) < b} .

By continuity of f(x) and assumption (ii), Aa,b is non-empty. Moreover, again by continuity

of f(x), Aa,b must contain an open subset of supp(X) (relative to the topology on supp(X)).

It therefore follows by the definition of supp(X) that

P{X ∈ Aa,b} = P{f(X) ∈ (a, b)} > 0 ,

which yields the desired contradiction.

Remark 5.3 An important special case of Lemma 5.1 is the case in which X is distributed

as a multivariate normal random vector with mean µ and covariance matrix Σ. In this case,

assumptions (i) - (ii) of the lemma are implied by the very mild restriction that Σi,i > 0 for

1 ≤ i ≤ s. In particular, it is not even necessary to assume that Σ is nonsingular.

Remark 5.4 Note that even in the case in which s = 1, so f(x) = x, both assumptions (i) and

(ii) in Lemma 5.1 are necessary to conclude that the distribution of f(X) is continuous and

strictly increasing. Therefore, the assumptions used in Lemma 5.1 seem as weak as possible.
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Proof of Theorem 5.1 Without loss of generality, suppose that H1, . . . ,Hs0
are all true and

the remainder false.

In order to illustrate better the main ideas of the proof, we first consider the case in which

P is such that the number of true hypotheses is s0 = 1. The initial step in our argument is to

show that all false null hypotheses are rejected with probability tending to 1. Since θj(P ) 6= θ0,j

for j ≥ 2, it follows that

Tn,j = n1/2|θ̂n,j − θ0,j|/σ̂n,j
P→ ∞

for j ≥ 2. On the other hand, for j = 1, we have that

Tn,j = OP (1) .

Therefore, to show all false hypotheses are rejected with probability tending to one, it suffices

to show that the critical values ĉn,j are all uniformly bounded above in probability for j ≥ 2.

Recall that ĉn,j is defined as follows: having determined ĉn,1, . . . , ĉn,j−1, ĉn,j is the infimum

over all c ∈ R for which

∑

s−j+1≤r≤s

r − s + j

r
P̂n{T ∗

n,j:j ≥ c, . . . , T ∗
n,s−r+1:j ≥ ĉn,s−r+1, T

∗
n,s−r:j < ĉn,s−r} (19)

is bounded above by α. Note that (19) can be bounded above by

jP̂n{T ∗
n,j:j ≥ c} ,

which can in turn be bounded above by

sP̂n{T ∗
n,s:s ≥ c} . (20)

It follows that the set c ∈ R for which (20) is bounded above by α is a subset of the set c ∈ R

for which (19) is bounded above by α. Therefore, ĉn,j is bounded above by the 1−α/s quantile

of the (centered) bootstrap distribution of the maximum of all s variables. In order to describe

the asymptotic behavior of this bootstrap quantity, let

Mn(x, P ) = P{ max
1≤j≤s

{n1/2|θ̂n,j − θj|/σ̂n,j} ≤ x} ,

and let M̂n(x) denote the corresponding bootstrap c.d.f. given by

P̂n{ max
1≤j≤s

{n1/2|θ̂∗n,j − θj(P̂n)|/σ̂∗
n,j} ≤ x} .

In this notation, the previously derived bound for ĉn,j may be restated as

ĉn,j ≤ M̂−1
n

(

1 − α

s

)

.
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By the Continuous Mapping Theorem, Mn(·, P ) converges in distribution to a limit distribution

M(·, P ), and the assumptions imply this limiting distribution is continuous. Choose 0 < ε < α
s

so that M(·, P ) is strictly increasing at M−1(1 − α
s + ε, P ). For such an ε,

M̂−1
n

(

1 − α

s
+ ε

)

P→ M−1
(

1 − α

s
+ ε, P

)

.

Therefore, ĉn,j is with probability tending to one less than M−1
(

1 − α
s + ε, P

)

. The claim that

ĉn,j is bounded above in probability is thus verified.

It now follows that, in the case s0 = 1,

FDRP =
1

s
P{Tn,1 ≥ ĉn,1} + oP (1) .

The critical value ĉn,1 is the 1−αs quantile of the distribution of T ∗
n,1 under P̂n. If 1−αs ≤ 0,

then ĉn,1 is defined to be −∞, in which case,

FDRP =
1

s
+ oP (1) ≤ α + oP (1) .

The desired conclusion thus holds. If, on the other hand, 1−αs > 0, then we argue as follows.

Note that by assumption (18) and the triangle inequality, we have that

ρ(J{1}(P ), Jn,{1}(P̂n))
P→ 0 .

Note further that by Lemma 5.1, J{1}(·, P ) is strictly increasing at J−1
{1}(1 − sα, P ). Thus,

ĉn,1
P→ J−1

{1}(1 − sα, P ) .

To establish the desired result, it now suffices to use Slutsky’s Theorem.

We now proceed to the general case. First, the same argument as in the case s0 = 1 shows

that hypotheses Hs0+1, . . . ,Hs are rejected with probability tending to one. It follows that

with probability tending to one, the FDRP is equal to

∑

s−s0+1≤r≤s

r − s + s0

r
P{Tn,s0:s0

≥ ĉn,s0
, . . . , Tn,s−r+1:s0

≥ ĉn,s−r+1, Tn,s−r:j < ĉn,s−r} ,

where the event Tn,s−r:j < ĉn,s−r is understood to be vacuously true when r = s.

In the definition of the critical values given by (17), recall that T ∗
n,r:t is defined to be the rth

smallest of the bootstrap test statistics among those corresponding to the smallest t original

test statistics. Define T ′
n,r:t to be the rth smallest of the bootstrap test statistics among those

corresponding to the first t original test statisitcs. Define c′n,j to be the critical values defined

in the same way as ĉn,j except T ∗
n,r:t in (17) is replaced with T ′

n,r:t. Recall that we have assumed

14



that null hypotheses H1, . . . Hs0
are true and the remainder false. Since the indices of the set

of s0 true hypotheses is identical to the indices corresponding to the smallest s0 test statistics

with probability tending to one, ĉn,j equals c′n,i with probability tending to 1 for j ≤ s0. It

follows that with probability tending to one, the FDRP is equal to

∑

s−s0+1≤r≤s

r − s + s0

r
P{Tn,s0:s0

≥ c′n,s0
, . . . , Tn,s−r+1:s0

≥ c′n,s−r+1, Tn,s−r:j < c′n,s−r} ,

where, as before, the event Tn,s−r:j < c′n,s−r is understood to be vacuously true when r = s.

In order to describe the asymptotic behavior of these critical values, let (T1, . . . , Ts0
) be a

random vector with distribution JI(P )(P ) and define Tr:t to be the rth smallest of T1, . . . , Tt.

Define c1, . . . , cs0
recursively as follows: having determined c1, . . . , cj−1, compute cj according

to the rule

cj = inf{c ∈ R :
∑

1≤k≤j

k

s − j + k
P{Tj:s0

≥ c,

· · · , Tj−k+1:s0
≥ cj−k+1, Tj−k:s0

< cj−k} ≤ α} ,

where, as before, the event Tj−k:s0
< cj−k is understood to be vacuously true when k = j. We

claim for 1 ≤ j ≤ s0 that

c′n,j
P→ cj . (21)

To see this, we argue inductively as follows. Suppose the result is true for c′n,1, . . . , c
′
n,j−1.

Using assumption (18) and the triangle inequality, we have that

ρ(J{1,...,j}(P ), Jn,{1,...,j}(P̂n))
P→ 0 .

Importantly, by the assumption of exchangeability, we have that J{1,...,j}(P ) = JK(P ) for any

K ⊆ {1, . . . , s0} such that |K| = j. Next note that

∑

1≤k≤j

P{Tj:s0
≥ c, · · · , Tj−k+1:s0

≥ cj−k+1, Tj−k:s0
< cj−k} = P{Tj:s0

≥ c} . (22)

The righthand side of (22) is strictly increasing in c by Lemma 5.1. As a result, at least one

of the terms on the lefthand side of (22) is strictly increasing at c = cj . It follows that

∑

1≤k≤j

k

s − j + k
P{Tj:s0

≥ c, · · · , Tj−k+1:s0
≥ cj−k+1, Tj−k:s0

< cj−k}

is strictly increasing at c = cj . The conclusion (21) thus follows. To complete the proof, it

now suffices to use Slutsky’s Theorem.
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Remark 5.5 In the definitions of T ∗
n,j given by (15) or (16) used in our bootstrap method

to generate the critical values, one can typically replace θj(P̂n) by θ̂n,j. Of course, the two

are the same under the following conditions: (1) θ̂n,j is a linear statistic; (2) θj(P ) = E(θ̂n,j);

and (3) P̂n is based on Efron’s bootstrap, the circular blocks bootstrap, or the stationary

bootstrap in Politis and Romano (1994). Even if conditions (1) and (2) are met, the estimators

θ̂n,j and θj(P̂n) are not the same if P̂n is based on the moving blocks bootstrap due to “edge

effects”. On the other hand, the substitution of θ̂n,j for θj(P̂n) does not in general affect the

asymptotic validity of the bootstrap approximation and Theorem 5.1 continues to hold. Lahiri

(1992) discusses this point for the special case of time series data and the sample mean. Still

another possible substitute is E[θ̂∗n,j |P̂n], but generally these are all first-order asymptotically

equivalent. In the simulations of Section 7 and the empirical application of Section 8, conditions

(1)–(3) always hold and so we can simply use θ̂n,j for the centering throughout.

6 A Subsampling Approach

In this section, we describe a subsampling-based construction of critical values for use in a

stepdown procedure that provides asymptotic control of the FDR. Here, we will no longer be

assuming that interest focuses on null hypotheses about a parameter vector θ(P ), but we will

instead return to considering more general null hypotheses. Moreover, we will no longer require

that the limiting joint distribution of the test statistics corresponding to true null hypotheses

be exchangeable. Finally, as is usual with arguments based on subsampling, we only require

a limiting distribution under the true distribution of the observed data, unlike the bootstrap,

which requires (18).

In order to describe our approach, we will use the following notation. For b < n, let

Nn =
(n

b

)

and let Tn,b,i,j denote the statistic Tn,j evaluated at the ith subset of data of size b.

Let Tn,b,i,r:t denote the tth largest of the test statistics

Tn,b,i,1, . . . , Tn,b,i,t .

Finally, define critical values ĉn,1, . . . , ĉn,s recursively as follows: having determined ĉn,1, . . . , ĉn,j−1,

compute ĉn,j according to the rule

ĉn,j = inf{c ∈ R :
1

Nn

∑

1≤i≤Nn

∑

1≤k≤j

k

s − j + k
I{Tn,b,i,j:s ≥ c,

. . . , Tn,b,i,j−k+1:s ≥ ĉn,j−k+1, Tn,b,i,j−k:s < ĉn,j−k} ≤ α} , (23)
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where the event Tn,b,i,j−k:s < ĉn,j−k is understood to be vacuously true when k = j. We now

provide conditions under which the the stepdown procedure with this choice of critical values

is asymptotically valid.

Theorem 6.1 Suppose the data X = (X1, . . . Xn) is an i.i.d. sequence of random variables

with distribution P . Consider testing null hypotheses Hj : P ∈ ωj, j = 1, . . . , s with test

statistics Tn,j , j = 1, . . . , s. Suppose Jn,I(P )(P ), the joint distribution of (Tn,j : j ∈ I(P )),

converges weakly to a limit law JI(P )(P ) for which

(i) the one-dimensional marginal distributions of JI(P )(P ) have continuous c.d.f.s,

(ii) supp(JI(P )(P )) is connected,

Suppose further that Tn,j = τntn,j and tn,j
P→ tj(P ), where tj(P ) > 0 if P ∈ ωj and tj(P ) = 0

otherwise. Let b = bn < n be a strictly increasing sequence of positive integers such that

b/n → 0 and τb/τn → 0. Then, the stepdown procedure with critical values defined by (23)

satisfies

lim sup
n→∞

FDRP ≤ α .

Proof: We first argue that all false null hypotheses are rejected with probability tending

to one. Let s0 = |I(P )| and, without loss of generality, order the test statistics so that

Tn,1, . . . , Tn,s0
correspond to the true null hypotheses. Suppose that there is at least one false

null hypothesis, for otherwise there is nothing to show, and note that

I{Tn,b,i,j:s ≥ c, . . . , Tn,b,i,j−k+1:s ≥ ĉn,j−k+1, Tn,b,i,j−k:s < ĉn,j−k} ≤ I{Tn,b,i,j:s ≥ c} .

Since k
s−j+k ≤ 1, it follows that

ĉn,j ≤ inf{c ∈ R :
1

Nn

∑

1≤i≤Nn

jI{Tn,b,i,j:s ≥ c} ≤ α} ,

which may in turn be bounded by

inf{c ∈ R :
1

Nn

∑

1≤i≤Nn

sI{Tn,b,i,s:s ≥ c} ≤ α} =

τb inf{c ∈ R :
1

Nn

∑

1≤i≤Nn

I{tn,b,i,s:s ≥ c} ≤ α

s
} ,

where tn,b,i,r:t is defined analogously to Tn,b,i,r:t. Following the proof of Theorem 2.6.1 in Politis

et al. (1999), we have that

inf{c ∈ R :
1

Nn

∑

1≤i≤Nn

I{tn,b,i,s:s ≥ c} ≤ α

s
} P→ max

1≤j≤s
tj(P ) > 0 ,
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where the final inequality follows from the assumption that there is at least one false null

hypothesis. Now, consider any Tn,j corresponding to a false null hypothesis. Since tn,j
P→

tj(P ) > 0 and τb/τn → 0, it follows that

Tn,j = τntn,j > τb inf{c ∈ R :
1

Nn

∑

1≤i≤Nn

I{tn,b,i,s:s ≥ c} ≤ α

s
} ,

and thus exceeds all critical values, with probability approaching 1. The desired result is

therefore established.

It follows that with probability approaching 1, we have that

FDRP =
∑

1≤k≤s0

k

s − s0 + k
P{Tn,s0:s0

≥ ĉn,s0
,

. . . , Tn,s0−k+1:s0
≥ ĉn,s0−k+1, Tn,s0−k:s0

< ĉn,s0−k} ,

where the event Tn,s0−k:s0
< ĉn,s0−k is again understood to be vacuously true when k = s0.

In order to describe the asymptotic behavior of this expression, let (T1, . . . , Ts0
) be a random

vector with distribution JI(P )(P ) and define Tr:t to be the rth largest of T1, . . . , Tt. Define

c1, . . . , cs0
recursively according to the rule

cj = inf{c ∈ R :
∑

1≤k≤j

k

s − j + k
P{Tj:s0

≥ c,

· · · , Tj−k+1:s0
≥ cj−k+1, Tj−k:s0

< cj−k} ≤ α} ,

where, as before, the event Tj−k:s0
< cj−k is understood to be vacuously true when k = j. By

the same argument used in the proof of Theorem 5.1, we have by Lemma 5.1 that

∑

1≤k≤j

k

s − j + k
P{Tj:s0

≥ c, · · · , Tj−k+1:s0
≥ cj−k+1, Tj−k:s0

< cj−k}

is continuous and strictly increasing at c = cj . We may therefore argue inductively that for

1 ≤ j ≤ s0 we have that

ĉn,j
P→ cj .

An appeal to Slutsky’s Theorem completes the argument.

Remark 6.1 At the expense of a much more involved argument, it is in fact possible to remove

the assumption that supp(JI(P )(P )) is connected. However, we know of no example where this

mild assumption fails.
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Remark 6.2 The above approach can be extended to dependent data as well. For example,

if the data X = (X1, . . . ,Xn) form a stationary sequence, we would only consider the n− b+1

subsamples of the form (Xi,Xi+1, . . . ,Xi+b−1). Generalizations for nonstationary time series,

random fields and point processes are further discussed in Politis et al. (1999).

Remark 6.3 Interestingly, even under the exchangeability assumption and the setup of Sec-

tion 5, where both the bootstrap and subsampling are asymptotically valid, the two procedures

are not asymptotically equivalent. To see this, suppose that s = s0 = 2 and that the joint

limiting distribution of the test statistics is (T1, T2), where Ti ∼ N(0, σ2
i ), σ1 = σ2, and T1

is independent of T2. Then, the bootstrap critical value ĉn,1 tends in probability to z1−α,

while the corresponding subsampling critical value tends in probability to the 1 − α quantile

of min{T1, T2}, which will be strictly less than z1−α.

If the exchangeability assumption fails, i.e., σ1 6= σ2, then the subsampling critical value

still tends in probability to the 1 − α quantile of min{T1, T2}. The bootstrap critical value,

however, does not even settle down asymptotically. Indeed, in this case, it tends in probability

to z1−ασ1 with probability P{T1 < T2} and to z1−ασ2 with probability P{T1 ≥ T2}.

7 Simulations

Since the proof of the validity of our stepdown procedure relies on asymptotic arguments, it is

important to shed some light on finite sample performance via some simulations. Therefore,

this section presents a small simulation study in the context of testing population means.

7.1 Comparison of FDR Control and Power

We generate random vectors X1, . . . ,Xn from an s-dimensional multivariate normal distri-

bution with mean vector θ = (θ1, . . . , θs), where n = 100 and s = 50. The null hypothe-

ses are Hj : θj ≤ 0 and the alternative hypotheses are H ′
j : θj > 0. The test statistics are

Tn,j =
√

nθ̂n,j/σ̂n,j , where

θ̂n,j =
1

n

n
∑

i=1

Xi,j and σ̂2
n,j =

1

n − 1

n
∑

i=1

(Xi,j − θ̂n,j)
2 ,

that is, we employ the usual t-statistics.

We consider three models for the covariance matrix Σ having (i, j) component σi,j. The

models share the feature σi,i = 1 for all i; so we are left to specify σi,j for i 6= j.
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• Common correlation: σi,j = ρ, where ρ = 0, 0.5, or 0.9.

• Power structure: σi,j = ρ|i−j|, where ρ = 0.95.

• Two-class structure: the variables are grouped in two classes of equal size s/2. Within

each class, there is a common correlation of ρ = 0.5; and across classes, there is a common

correlation of ρ = −0.5. Formulated mathematically, for i 6= j,

σi,j =







0.5 if both i, j ∈ {1, . . . , s/2} or both i, j ∈ {s/2 + 1, . . . , s}
−0.5 otherwise

,

We consider four scenarios for the mean vector θ = (θ1, . . . , θs).

• All θj = 0.

• Every fifth θj = 0.2 and the remaining θj = 0, so there are ten θj = 0.2.

• Every other θj = 0.2 and the remaining θj = 0, so there are twenty five θj = 0.2.

• All θj = 0.2

We include the following FDR controlling procedures in the study.

• (BH) The procedure of Benjamini and Hochberg Benjamini and Hochberg (1995).

• (STS) The adaptive BH procedure by Storey et al. Storey et al. (2004). Analogously to

their simulation study, we use λ = 0.5 for the estimation of s0.

• (BKY) The adaptive BH procedure of Benjamini et al. (2006) detailed in Algorithm 3.1.

Among all the adaptive procedures employed in the simulations of Benjamini et al. (2006),

this is the only one that controls the FDR under positive dependence.

• (Boot) The bootstrap procedure of Section 5. Since the data are i.i.d., we use Efron’s

(1979) bootstrap with B = 500 resamples.

The p-values for use in BH, STS, and BKY are computed as p̂n,j = 1−Ψ99(Tn,j), where Ψk(·)
denotes the c.d.f. of the t-distribution with k degrees of freedom.

We also experimented with the subsampling procedure of Section 6 but the results were not

very satisfactory. Apparently, sample sizes larger than n = 100 are needed for the subsampling

procedure to be employed.
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The performance criteria are (1) the empirical FDR compared to the nominal level α = 0.1;

and (2) the average number of false hypotheses rejected. The results are presented in Table 1

(for common correlation) and Table 2 (for power structure and two-class structure). They can

be summarized as follows.

• BH, BKY and Boot provide satisfactory control of the FDR in all scenarios. On the

other hand, STS is liberal under positive constant correlation and for the power structure

scenario.

• For the five scenarios with ten θj = 0.2, BKY is as powerful as BH, while in all other

scenarios it is more powerful. In return, for the single scenario with ten θj = 0.2 under

independence, Boot is as powerful as BKY, while in all other scenarios it is more powerful.

• In the majority of scenarios, the empirical FDR of Boot is closest to the nominal level

α = 0.1.

• STS is often more powerful than Boot but some of those comparisons are not meaningful,

namely when Boot provides FDR control while STS does not.

7.2 Robustness of FDR Control against Random Correlations

In the previous subsection, we used three models for the covariance matrix: constant corre-

lation, power structure, and two-class structure. In all cases, BH, BKY, and Boot provided

satisfactory control of the FDR in finite samples.

The goal of this subsection is to study whether FDR control is maintained for ‘general’

covariance matrices. Since it is impossible to employ all possible covariance matrices in a

simulation study, our approach is to employ a large, albeit random, ‘representative’ subset of

covariance matrices. To this end, we generate 1,000 random correlation matrices uniformly

from the space of positive definite correlation matrices. (Joe (2006) recently introduces a new

method which accomplishes this. Computationally more efficient variants are provided by

Lewandowski et al. (2007), and we use their programming code which Prof. Joe has graciously

shared with us.) We then simulate the FDR for each resulting covariance matrix, taking all

standard deviations to be equal to one. However, we reduce the dimension from s = 50 to

s = 4 to counter the curse of dimensionality. Note that an s-dimensional correlation matrix

lives in a space of dimension (s− 1)s/2. Since we can only consider a finite number of random

correlation matrices, we ‘cover’ this space more thoroughly when a smaller value of s is chosen.

21



As far as the mean vector is concerned, two scenarios are considered: one θj = 0.2 and one

θj = 20. The latter scenario results in perfect power for all four methods.

The resulting 1,000 simulated FDRs for each method and each mean scenario are displayed

via boxplots in Figure 1. Again, BH, BKY, and Boot provide satisfactory control of the FDR

throughout, while STS is generally liberal. In addition, Boot tends to provide FDR control

closest to the nominal level α = 0.1, followed by BKY and BH.

We also experimented with a larger value of s and different fractions of false null hypothe-

ses. The results (not reported) were qualitatively similar. In particular, we could not find a

constellation where any of BH, BKY, or Boot were liberal.

8 Empirical Applications

8.1 Hedge Fund Evaluation

We revisit the data set of Romano et al. (2008) concerning the evaluation of hedge funds.

There are s = 209 hedge funds with a return history of n = 120 months compared to the

risk-free rate as a common benchmark. The parameters of interest are θj = µj −µB, where µj

is the expected return of the jth hedge fund and µB is the expected return of the benchmark.

Since the goal is to identify the funds that outperform the benchmark, we are in the one-sided

case (11) with θ0,j = 0, for j = 1, . . . , s.

Naturally, the estimator of θj is given by

θ̂n,j =
1

n

n
∑

i=1

Xi,j −
1

n

n
∑

i=1

Xi,B ,

that is, by the difference of the corresponding sample averages. It is well known that hedge

fund returns, unlike mutual fund returns, tend to exhibit non-negligible serial correlations; see,

for example, Lo (2002) and Kat (2003). Accordingly, one has to account for this time series

nature in order to obtain valid inference. The standard errors for the original data, σ̂n,j, use a

kernel variance estimator based on the prewhitened QS kernel and the corresponding automatic

choice of bandwidth of Andrews and Monahan (1992). The bootstrap data are generated using

the circular block bootstrap of Politis and Romano (1992), based on B = 5, 000 repetitions.

The standard errors in the bootstrap world, σ̂∗
n,j, use the corresponding ‘natural’ variance

estimator; for details, see Götze and Künsch (1996) or Romano and Wolf (2006). The choice

of the block sizes for the circular bootstrap is detailed in Romano et al. (2008).
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The number of outperforming funds identified by various procedures and for two nominal

levels α are presented in Table 3. Both BKY and Boot results in more rejections than BH,

with the comparison between BKY and Boot depending on the level. The numbers for STS

appear unreasonably high. Apparently, this is due to the fact that the weak dependence (across

test statistics) assumption for the application of this method is clearly violated. The median

absolute correlation across funds is 0.32; also see Figure 2.

8.2 Pairwise Fitness Correlations

We consider Example 6.5 of Westfall and Young (1993) where the pairwise correlations of

seven numeric ‘fitness’ variables, collected from n = 31 individuals, are analyzed. Denote the

s =
(7
2

)

= 21 pairwise population correlations, ordered in any fashion, by θj, for j = 1, . . . , s,

and let θ̂n,j, for j = 1, . . . , s, denote the corresponding Pearson’s sample correlations. Since

the goal is to identify the non-zero population correlations, we are in the two-sided case (12)

with θ0,j = 0, for j = 1, . . . , s.

Westfall and Young (1993) provide two sets of individual p-values: asymptotic p-values

based on the assumption of a bivariate normal distribution and bootstrap p-values. As can be

seen from their Figure 6.4, the two are always very close to each other. However, as pointed

out by Westfall and Young (1993, page 194), both sets of p-values are actually for the stronger

null hypotheses of independence rather than zero correlation. Obviously, independence and

zero correlation are the same thing for multivariate normal data, but we do not wish to make

this parametric assumption.

Instead, we use Efron’s bootstrap to both compute individual p-values and to carry out

our bootstrap FDR procedure. (Of course, the same set of bootstrap resamples is used for

both purposes.) The details are as follows. The standard errors for the original data, σ̂n,j,

are obtained using the delta method because, again, we do not want to assume multivariate

normality; see Example 11.2.10 of Lehmann and Romano (2005b). This results in test statistics

Tn,j = |θ̂n,j|/σ̂n,j . The bootstrap data are generated using Efron’s (1979) bootstrap, based on

B = 5, 000 repetitions. The standard errors for the bootstrap data, σ̂∗
n,j, are computed in

exactly the same fashion as for the original data. This results in bootstrap statistics T ∗
n,j =

|θ̂∗n,j − θ̂n,j|/σ̂∗
n,j . The individual p-values are then derived according to (4.11) of Davison and

Hinkley (1997):

p̂n,j =
1 + #{T ∗

n,j ≥ Tn,j}
B + 1

. (24)

The number of non-zero correlations identified by various procedures and for two nominal
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levels α are presented in Table 4. BKY results in the same number of rejections as BH for

both nominal levels. Boot results in the same number of rejections for α = 0.05, but yields

three additional rejection for α = 0.1. The numbers for STS again appear unreasonably high.

An alternative way of testing Hj : θj = 0 is to reparametrize θj by

ϑj = artanh(θj) =
1

2
log

(

1 + θj

1 − θj

)

.

This transformation is known as Fisher’s z-transformation, which under normality is variance

stabilizing; see Example 11.2.10 of Lehmann and Romano (2005b). Obviously, θj = 0 if and

only if ϑj = 0. The natural estimator of ϑj is given by ϑ̂n,j = artanh(θ̂n,j). Using the fact

that artanh′(x) = 1/(1 − x2), the delta method implies the corresponding standard error

σ̃n,j = σ̂n,j/(1 − θ̂2
n,j). This results in test statistics Tn,j = |ϑ̂n,j|/σ̃n,j . Some motivation for

bootstrapping the z-transformed sample correlation rather than the ‘raw’ sample correlation

is given in Efron and Tibshirani (1993, Section 12.6). Again, the bootstrap data are obtained

using Efron’s (1979) bootstrap, based on B = 5, 000 repetitions. The standard errors for

the bootstrap data, σ̃∗
n,j, are computed as σ̃∗

n,j = σ̂∗
n,j/(1 − θ̂∗n,j)

2. This results in bootstrap

statistics T ∗
n,j = |ϑ̂∗

n,j − ϑ̂n,j|/σ̃∗
n,j . The individual p-values are derived as in (24) again.

The number of non-zero correlations identified by various procedures and for two nominal

levels α are also presented in Table 4. While making inference for the ϑj does not necessarily

lead to the same results as making inference for the θj , in particular when the sample size n is

not large, for this particular data set none of the numbers of rejections change.

9 Conclusion

In this article, we have developed two methods which provide asymptotic control of the false

discovery rate. The first method is based on the bootstrap and the second is based on sub-

sampling. Asymptotic validity of the bootstrap holds under fairly weak assumptions, but we

require an exchangeability assumption for the joint limiting distribution of the test statistics

corresponding to true null hypotheses. The method based on subsampling can be justified with-

out such an assumption. However, simulations support the use of the bootstrap method under

a wide range of dependence. Even under independence, our bootstrap method is competitive

with that of Benjamini et al. (2006), and outperforms it under dependence.
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Table 1: Empirical FDRs expressed as percentages (in the rows “Control”) and average number

of false hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and

s = 50. The nominal level is α = 10%. The number of repetitions is 5,000 per scenario and

the number of bootstrap resamples is B = 500.

σi,j = 0.0 σi,j = 0.5 σi,j = 0.9

BH STS BKY Boot BH STS BKY Boot BH STS BKY Boot

All θj = 0

Control 10.0 10.3 9.1 10.0 6.4 16.5 6.0 9.9 4.8 32.8 4.4 9.8

Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θj = 0.2

Control 7.6 9.5 7.3 7.3 6.4 16.9 7.5 9.3 5.0 26.5 5.8 10.0

Rejected 3.4 3.8 3.4 3.4 3.5 4.2 3.5 4.1 3.7 4.5 3.7 6.0

Twenty five θj = 0.2

Control 5.0 9.5 6.2 6.7 4.3 13.9 7.4 8.9 3.9 18.3 7.1 9.5

Rejected 13.2 17.4 14.5 14.9 12.3 15.1 13.1 14.1 12.6 14.2 12.7 16.6

All θj = 0.2

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 34.8 49.7 44.9 48.2 31.9 46.9 36.4 39.1 32.1 47.3 32.1 36.4
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Table 2: Empirical FDRs expressed as percentages (in the rows “Control”) and average number

of false hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and

s = 50. The nominal level is α = 10%. The number of repetitions is 5,000 per scenario and

the number of bootstrap resamples is B = 500.

Power structure Two-class structure

BH STS BKY Boot BH STS BKY Boot

All θj = 0

Control 5.4 16.5 4.9 10.2 8.1 7.9 7.5 10.1

Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θj = 0.2

Control 6.5 17.0 7.4 9.8 6.8 8.0 6.9 8.3

Rejected 3.5 4.2 3.5 4.7 3.2 3.7 3.2 3.6

Twenty five θj = 0.2

Control 4.3 13.9 7.4 9.1 5.0 9.3 6.3 7.4

Rejected 12.3 15.0 13.1 14.8 13.1 17.5 14.3 15.3

All θj = 0.2

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 32.0 47.1 36.0 38.7 35.2 48.8 44.5 47.3

Table 3: Number of outperforming funds identified.

Procedure α = 0.05 α = 0.1

BH 58 101

STS 173 203

BYK 72 142

Boot 81 129

Table 4: Number of non-zero correlations identified.

Procedure α = 0.05 α = 0.1

BH 2 4

STS 10 20

BYK 2 4

Boot 2 7
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Figure 1: Boxplots of the simulated FDRs described in Subsection 7.2. The horizontal dashed

lines indicate the nominal level α = 0.1.
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Figure 2: Histogram of the 208 · 209/2 = 21, 736 cross correlations between the excess returns

of the 209 hedge funds. Since it is not true that the majority of these correlations are close to

zero, the weak dependence assumption of Storey et al. (2004) is clearly violated.
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