
A Reality Check for Data Snooping
Author(s): Halbert White
Source: Econometrica, Vol. 68, No. 5 (Sep., 2000), pp. 1097-1126
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/2999444
Accessed: 08/10/2008 01:32

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=econosoc.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

http://www.jstor.org

http://www.jstor.org/stable/2999444?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=econosoc


Econometrica, Vol. 68, No. 5 (September, 2000), 1097-1126 

A REALITY CHECK FOR DATA SNOOPING 

BY HALBERT WHITE1 

Data snooping occurs when a given set of data is used more than once for purposes of 
inference or model selection. When such data reuse occurs, there is always the possibility 
that any satisfactory results obtained may simply be due to chance rather than to any 
merit inherent in the method yielding the results. This problem is practically unavoidable 
m the analysis of time-series data, as typically only a single history measuring a given 
phenomenon of interest is available for analysis. It is widely acknowledged by empirical 
researchers that data snooping is a dangerous practice to be avoided, but in fact it is 
endemic. The main problem has been a lack of sufficiently simple practical methods 
capable of assessing the potential dangers of data snooping in a given situation. Our 
purpose here is to provide such methods by specifying a straightforward procedure for 
testing the null hypothesis that the best model encountered in a specification search has 
no predictive superiority over a given benchmark model. This permits data snooping to be 
undertaken with some degree of confidence that one will not mistake results that could 
have been generated by chance for genuinely good results. 

KEYwORDS: Data mining, multiple hypothesis testing, bootstrap, forecast evaluation, 
model selection, prediction. 

1. INTRODUCTION 

WHENEVER A "GOOD" FORECASTING MODEL iS obtained by an extensive specifi- 
cation search, there is always the danger that the observed good performance 
results not from actual forecasting ability, but is instead just luck. Even when no 
exploitable forecasting relation exists, looking long enough and hard enough at a 
given set of data will often reveal one or more forecasting models that look 
good, but are in fact useless. 

This is analogous to the fact that if one sequentially flips a sufficiently large 
number of coins, a coin that always comes up heads can emerge with high 
likelihood. More colorfully, it is like running the newsletter scam: One selects a 
large number of individuals to receive a free copy of a stock market newsletter; 
to half the group one predicts the market will go up next week; to the other, that 
the market will go down. The next week, one sends the free newsletter only to 
those who received the correct prediction; again, half are told the market will go 
up and half down. The process is repeated ad libitum. After several months 

1The author is grateful to the editor, three anonymous referees, Paul Churchland, Frank 
Diebold, Dimitris Politis, Ryan Sullivan, and Joseph Yukich for helpful comments, and to Douglas 
Stone of Nicholas Applegate Capital Management for helping to focus my attention on this topic. 
All errors are the author's responsibility. Support for this research was provided by NeuralNet R&D 
Associates and QuantMetrics R&D Associates, LLC. Computer implementations of the methods 
described in this paper are covered by U.S. Patent 5,893,069. 
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there can still be a rather large group who have received perfect predictions, and 
who might pay for such "good" forecasts. 

Also problematic is the mutual fund or investment advisory service that 
includes past performance information as part of their solicitation. Is the past 
performance the result of skill or luck? 

These are all examples of "data snooping." Concern with this issue has a 
noble history. In a remarkable paper appearing in the first volume of Economet- 
rica, Cowles (1933) used simulations to study whether investment advisory 
services performed better than chance, relative to the market. More recently, 
resulting biases and associated ill effects from data snooping were brought to 
the attention of a wide audience and well documented by Lo and MacKinley 
(1990). Because of these difficulties, it is widely acknowledged that data snoop- 
ing is a dangerous practice to be avoided; but researchers still routinely data 
snoop. There is often no other choice for the analysis of time-series data, as 
typically only a single history for a given phenomenon of interest is available. 

Data snooping is also known as data mining. Although data mining has 
recently acquired positive connotations as a means of extracting valuable rela- 
tionships from masses of data, the negative connotations arising from the ease 
with which naive practitioners may mistake the spurious for the substantive are 
more familiar to econometricians and statisticians. Leamer (1978, 1983) has 
been a leader in pointing out these dangers, proposing methods for evaluating 
the fragility of the relationships obtained by data mining. Other relevant work is 
that of Mayer (1980), Miller (1981), Cox (1982), Lovell (1983), Potscher (1991), 
Dufour, Ghysels, and Hall (1994), Chatfield (1995), Kabaila (1995), and Hoover 
and Perez (1998). Each examines issues of model selection in the context of 
specification searches, with specific attention to issues of inference. Recently, 
computer scientists have become concerned with the potential adverse effects of 
data mining. An informative consideration of problems of model selection and 
inference from this perspective is that of Jensen and Cohen (2000). 

Nevertheless, none of these studies provides a rigorously founded, generally 
applicable method for testing the null hypothesis that the best model encoun- 
tered during a specification search has no predictive superiority over a bench- 
mark model. The purpose of this paper is to provide just such a method. This 
permits data snooping/mining to be undertaken with some degree of confidence 
that one will not mistake results that could have been generated by chance for 
genuinely good results. 

Our null hypothesis is formulated as a multiple hypothesis, the intersection of 
1 one-sided hypotheses, where 1 is the number of models considered. As such, 
bounds on the p-value for tests of the null can be constructed using the 
Bonferroni inequality (e.g. Savin (1980)) and its improvements via the union- 
intersection principle (Roy (1953)) or other methods (e.g. Hochberg (1988), 
Hommel (1989)). Resampling-based methods for implementing such tests are 
treated by Westfall and Young (1993). Nevertheless, as Hand (1998, p. 115) 
points out, "these [multiple comparison approaches] were not designed for the 
sheer numbers of candidate patterns generated by data mining. This is an area 
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that would benefit from some careful thought." Thus, our goal is a method that 
does not rely on such bounds, but that directly delivers, at least asymptotically, 
appropriate p-values. 

In taking this approach, we seek to control the simultaneous rate of error 
under the null hypothesis. As pointed out by a referee, one may alternatively 
wish to control the average rate of error (i.e., the frequency at which we find 
"better" models). Which is preferred can be a matter of taste; Miller (1981, 
Chapter 1) provides further discussion. Because our interest here focuses on 
selecting and using an apparently best model, rather than just asking whether or 
not a model better than the benchmark may exist, we adopt the more stringent 
approach of controlling the simultaneous rate of error. Nevertheless, the results 
presented here are also relevant for controlling-average error rates, if this is 
desired. 

2. THEORY 

2.a The Basic Framework 

We build on recent work of Diebold and Mariano (1995) and West (1996) 
regarding testing hypotheses about predictive ability. Our usage and notation 
will be similar. 

Predictibns are to be made for n periods, indexed from R through T, so that 
T = R + n - 1. The predictions are made for a given forecast horizon, T. The 
first forecast is based on the estimator PR, formed using observations 1 through 
R, the next based on the estimator PR + 1' and so forth, with the final forecast 
based on the estimator PT. 

We test a hypothesis about an 1 x 1 vector of moments, E(f*), where 
f*-f(Z, 8 *) is an 1 x 1 vector with elements fk* -fk(Z, 83*), for a random 
vector Z and parameters /3 *-plim PT. Typically, Z will consist of vectors of 
dependent variables, say Y, and predictor variables, say X. Our test is based on 
the 1 x 1 statistic 

T 

fn E f^ 
t=R 

where ft+ T f(Zt+7, ,t), and the observed data are generated by {Zt}, a station- 
ary strong (a-) mixing sequence having marginal distributions identical to that of 
Z, with the predictor variables of Zt+ T available at time t. For suitable choice of 
f, the condition 

Ho: E(f*)<0 

will express the null hypothesis of no predictive superiority over a benchmark 
model. 

Although we follow West (1996) in formulating our hypotheses in terms of 
(3 *, it is not obvious that /3 * is necessarily the most relevant parameter value for 
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finite samples, as a referee points out. Instead, the estimators 8, are the 
parameter values directly relevant for constructing forecasts, so alternative 
approaches worth consideration would be, for example, to test the hypothesis 
that limnO -E(f) < 0, that limnoo E(f I Z1, ... . ZR) < O, or that E(f,?7I 
z1 .. ., Zt) < 0. We leave these possibilities to subsequent research. 

Some examples will illustrate leading cases of interest. For simplicity, set 
T= 1. For now, take 1=1. 

Example 2.1: To test whether a particular set of variables has predictive power 
superior to that of some benchmark regression model in terms of (negative) 
mean squared error, take 

ft+l =-(Yt+1-Xl+1 I1,t) + (YI+I-X6,+1 

where yt+ 1 is a scalar dependent variable, , is the OLS estimator based on 
{(ys,Xl, s), s=,...,t} (using regressors X1), and / is the OLS estimator 
based on {(ys, Xo ), s = 1,..., t}, using benchmark regressors XO. Here t- 
(1 tAI, I3 t)'. Note that the regression models need not be nested. 

Example 2.2: To test whether a financial market trading strategy yields returns 
superior to a benchmark strategy take 

ft+ = log[1 ?y+1S1(Xl, t+1, /31)] - log[1 +Yt+lso(xo t+ 18*)] 

Here yt+1 represents per period returns and SO and S1 are "signal" functions 
that convert indicators (XO, t+ 1 and X1, t+1) and given parameters (,38 and 1Q* ) 
into market positions. The signal functions are step functions, with three 
permissible values: 1 (long), 0 (neutral), and - 1 (short). As is common in 
examining trading strategies (e.g., Brock, Lakonishok, and LeBaron (1992)), the 
parameters of the systems are set a priori and do not require estimation. We are 
thus in Diebold and Mariano's (1995) framework. It is plausible that estimated 
parameters can be accommodated in the presence of step functions or other 
discontinuities, but we leave such cases aside here. The first log term represents 
returns from strategy one, while the second represents returns from the bench- 
mark strategy. An important special case is SO = 1, the buy and hold strategy. 

Example 2.3: To test generally whether a given model is superior to a 
benchmark, take 

At g=lo L(Yt + 1, X1, t + 1, Al1, t)log Lo(yt+ 1, Xo, t + 1, AO, t) S 

where log Lk(Y,+ 1, Xk, t+ 1 18k, t) is the predictive log-likelihood for predictive 
model k, based on the quasi-maximum likelihood estimator (QMLE) 18k t, 
k = 0, 1. The first example is a special case. 

Not only do we have E(f*) < 0 under the null of no predictive superiority, but 
the moment function also serves as a model selection criterion. Thus we can 
search over 1 21 specifications by assigning one moment condition/model 
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selection criterion to each model. To illustrate, for the third example the 1 x 1 
A 

vector ft+ 1 now has components 

fk,t+1 = log Lk(Yt+1, Xk t+1v fk,t) k logL0(yt+1 ,t+1, ,,) 

(k= 1, ... ., 1). 

We select the model with the best model selection criterion value, so the 
appropriate null is that the best model is no better than the benchmark. 
Formally, 

Ho maxk l. E(fk, ) < 0. 

The alternative is that the best model is superior to the benchmark. 
A complexity penalty to enforce model parsimony is easily incorporated; for 

example, to apply the Akaike Information Criterion, subtract Pk -Po from the 
above expression for fk, t+ where Pk(Po) is the number of parameters in the 
kth (Oth) model. We thus select the model with the best (penalized) predictive 
log-likelihood. 

The null hypothesis Ho is a multiple hypothesis, the intersection of the 
one-sided individual hypotheses E(fk*) < 0, k = 1, ... , 1. As discussed in the 
introduction, our goal is a method that does not rely on bounds, such as 
Bonferropi or its improvements, but that directly delivers, at least asymptoti- 
cally, appropriate p-values. 

2.b Basic Theory 

We can provide such a method whenever f, appropriately standardized, has a 
continuous limiting distribution. West's (1996) Main Theorem 4.1 gives conve- 
nient regularity conditions (reproduced in the Appendix as Assumption A) 
which ensure that 

nl/2(f-E(f*)) =*N(O, 2), 

where =* denotes convergence in distribution as T -* oo, and n (1 x 1) is 

U=limT~Ovar[n1/2 
L t-R J 

provided that either F E[(d/d/3 )f(Z, /3 *)] = 0 or n/R - 0 as T -* When 
neither of these conditions holds, West's Theorem 4.1(b) establishes the same 
conclusion, but with a more complex expression for f2. For Examples 2.1 and 
2.3, F = 0 is readily verified. In Example 2.2, there are no estimated parameters, 
so F plays no role. 

From this, West obtains standard asymptotic chi-squared statistics nf' I2if 
for testing the null hypothesis E(f*) = 0, where U2 is a consistent estimator for 
U2. In sharp contrast, our interest in the null hypothesis E(f*) < 0 leads 
naturally to tests based on maxk . Ifk. Methods applicable to testing E(f*) 
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= 0 follow straightforwardly from our results; nevertheless, for succinctness we 
focus here strictly on testing E(f *) < 0. 

Our first result establishes that selecting the model with the best predictive 
model selection criterion does indeed identify the best model when there is one. 

PROPOSITION 2.1: Suppose that n1/2(f- E(f *)) * N(O, n) for Q positive 
semi-definite (e.g. Assumption A of the Appendix holds). (a) If E(fk*) > 0 for 
some 1<k<1, then for any 0<c<E(fk*), P[fk>c]-*1 as T--oo.(b) If 1>1 
and E(fi*)>E(fk), for allk=2,...,1, then P[fl>fk for all k=2,...,l].1.as 
T - oo. 

Part (a) says that if some model (e.g., the best model) beats the benchmark, 
then this is eventually revealed by a positive estimated relative performance. 
When / = 1, this result is analogous to a model selection result of Rivers and 
Vuong (1991), for a nonpredictive setting. It is also analogous to a model 
selection result of Kloek (1972) for I ? 1, again in a nonpredictive setting. Part 
(b) says that the best model eventually has the best estimated performance 
relative to the benchmark, with probability approaching one. 

A test of Ho for the predictive model selection criterion follows from the 
following proposition. 

PROPOSITION 2.2: Suppose that n 2(f- E(f *)) - N(0, Q) for Q positive 
semi-definite (e.g. Assumption A holds). Then as T oo 

maXk 1 n1/2{fk - E(fk* )} = V1 maXk= 1 1{1k} 

and 

mink= .1 nn /{fk -E(fk* )} ' WV mink l,.,k 

where 2 is an 1 x I vector with components Yk, k =1,...,1, distributed as 
N(0, Q). 

Given asymptotic normality, the conclusion holds regardless of whether the 
null or the alternative is true. We enforce the null for testing by using the fact 
that the element of the null least favorable to the alternative is that E(fk*) = 0 
for all k. The behavior of the predictive model selection criterion for the best 
model, say 

Vl -maxk..l ln1/2fk, 

is thus known under the element of the null least favorable to the alternative, 
approximately, for large T, permitting construction of asymptotic p-values. By 
enforcing the null hypothesis in this way, we obtain the critical value for the test 
in a manner akin to inverting a confidence interval for maxk E(fk*). Any method 
for obtaining (a consistent estimate of) a p-value for Ho: E(f*) <0 in the 
context of a specification search we call a "Reality Check," as this provides an 
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objective measure of the extent to which apparently good results accord with the 
sampling variation relevant for the search. 

The challenge to implementing the Reality Check is that the desired distribu- 
tion, that of the extreme value of a vector of correlated normals for the general 
case, is not known. An analytic approach to the Reality Check is not feasible. 

Nevertheless, there are at least two ways to obtain the desired p-values. The 
first is Monte Carlo simulation. For this, compute a consistent estimator of U2, 
say U2. For example, one can use the block resampling estimator of Politis and 
Romano (1994a) or the block subsampling estimator of Politis and Romano 
(1994c). Then one samples a large number of times from N(O, D) and obtains 
the desired p-value from the distribution of the extremes of N(O, D). We call 
this the "Monte Carlo Reality Check" p-value. 

To appreciate the computations needed for the Monte Carlo approach, 
consider the addition of one more model (say model 1) to the existing collection. 
First, we compute the new elements of the estimate U2, its lth row, f2= 

611 1). For concreteness, suppose we manipulate [fk,t+7, k = 1,..., 1; 
t = 1, . . ., T] to obtain 

T 

Qlk 
= 

YIkO + 1? WTs(Y^kls + YIlks) (k =1...,1), 
s= 1 

where WTS s = 1 ... , T are suitable weights and 9kls (T - 

s t = s+ l fk t + T fl t+ T-S ' 

Next, we draw independent 1 x 1 random variables 7i N(O, U), i = 1,..., N. 
For this, compute the Cholesky decomposition of U2, say C (so CC' = D), and 
form 7i = Cil, where Nil is I-variate standard normal (N(O, II)). Finally, com- 
pute the Monte Carlo Reality Check p-value from the order statistics of 

-lmaXk= lYi, k where Yi Yi1Y 
The computational demands of constructing Vi can be reduced by noting 

that C is a triangular matrix whose Ith row depends only on 12l and the 
preceding l - 1 rows of C. Thus, by storing 1l, C, and (,/I', Vi,), i = 1,. .., N, at 
each stage (1 = 1, 2,... ), one can construct Vi 1 at the next stage as V 
max( ,i1,Cg/il), where C, is the (Ix 1) lth row of C, and 7ij is formed 
recursively as qil = (qil-> ,i 1)Y, with mi, 1 independently drawn as (scalar) unit 
normal. 

To summarize, obtaining the Monte Carlo Reality Check p-value requires 
storage and manipulation of [fk,t+r], U, C, and (71i", ;i1), i = 1,..., N. These 
storage and manipulation requirements increase with the square of 1. Also, if 
one is to account for the data-snooping efforts of others, their [fk + r] matrix is 
required. 

A second approach relies on the bootstrap, using a resampled version of f to 
deliver the "Bootstrap Reality Check" p-value for testing H, For suitably 
chosen random indexes 0(t), the resampled statistic is computed as 

T 

t *n- f Zt= (t=RI...IT). 
t=R 
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To handle time-series data, we require a resampling procedure applicable to 
dependent processes. The moving blocks method of Kuensch (1989) and Liu and 
Singh (1992) is one such procedure. It works by constructing a resample from 
fixed length blocks of observations where the starting index for each block is 
drawn randomly. A block length of one gives the standard bootstrap, whereas 
larger block lengths accommodate increasing dependence. A more sophisticated 
version of this approach is the tapered block bootstrap of Paparoditis and Politis 
(2000). Although any of these methods can be validly applied, for analytic 
simplicity and concreteness we apply and analyze the stationary bootstrap of 
Politis and Romano (1994a,b) (henceforth, P&R). This procedure is analogous 
to the moving blocks bootstrap, but, instead of using blocks of fixed length (b, 
say) one uses blocks of random length, distributed according to the geometric 
distribution with mean block length b. As P&R show, this procedure delivers 
valid bootstrap approximations for means of a-mixing processes, provided b 
increases appropriately with n. 

To implement the stationary bootstrap, P & R propose the following algorithm 
for obtaining the O(t)'s. Start by selecting a smoothing parameter q = 1/b =qn, 

0 < qn < 1, qn -?0, n qn -? ? as n -o x, and proceed as follows: (i) Set t =R. 
Draw 0(R) at random, independently and uniformly from {R,..., T}. (ii) Incre- 
ment t. If t > T, stop. Otherwise, draw a standard uniform random variable U 
(supported on [0, 1]) independently of all other random variables. (a) If U < q, 
draw 0(t) at random, independently and uniformly from {R, ..., T}; (b) if U ? q, 
set 0(t) = 0(t - 1) + 1; if 0(t)> T, reset to 0(t) =R. (iii) Repeat (ii). As P&R 
show, this delivers blocks of random length, distributed according to the geomet- 
ric distribution with mean block length 1/q. 

When , * appears instead of 819(t) in the definition of f*, as it does in 
Diebold and Mariano's (1995) setup, P& R's (1994a) Theorem 2 applies immedi- 
ately to establish that under appropriate conditions (see Assumption B of the 
Appendix), the distribution, conditional on {ZR+, ...,ZT+I}, of nl/2(f* -f) 
converges, as n increases, to that of nl/2(f- E(f *)). 

Thus, by repeatedly drawing realizations of nl/2(f* -f ), we can build up an 
estimate of the desired distribution N(0, Q). The Bootstrap Reality Check 
p-value for the predictive model selection statistic, Vl, can then immediately be 
obtained from the quantiles of 

V* -- maxk = 1lInl/1 (fk - fk). 

When /3(t) appears in f*, careful argument under mild additional regularity 
conditions delivers the same conclusion. It suffices that PT obeys a law of the 
iterated logarithm, a refinement of the central limit theorem. With mild addi- 
tional regularity (see Sin and White (1996) or Altissimo and Corradi (1996)) one 
can readily verify the following. 

ASSUMPTION C: Let B and H be as defined in Assumption A.2 of the Appendix, 
and let G -B[limT -cvar(T1/2H(t))]B'. For all A (k X 1), A'A = 1, 

P[lim supTT1/2'( 8T - * A'GA log log(A'GA)T} I - 1. 
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Our main result can now be stated as follows: 

THEOREM 2.3: Suppose either: (i) Assumptions A and B hold and there are no 
estimated parameters; or (ii) Assumptions A-C hold, and either: (a) F = 0 and 
qn=cn- " for constants c > 0, 0 < y < 1 such that (n'y S /R)log log R -* 0 as 
T -o o for some e > 0; or (b) (n/R)log log R -O 0 as T -o Then forf* computed 
using P&R's stationary bootstrap, 

p(L[n/2(f * -I) IZ1 ... I, ZT+TJ ,L[n1/2( f-E(f*))]) O, 

as T -* oo, where p is any metric metrizing convergence in distribution and L[] 
denotes the probability law of the indicated random vector. 

Observe that the condition (n/R)log log R -* 0 appearing in (ii.b) is slightly 
stronger than n/R -- 0 appearing in West's Theorem 4.1(a). West does not 
require a condition linking n and R when F =0; our condition in (ii.a), 
necessitated by the bootstrap, is nevertheless weaker than that of (ii.b), as y < 1. 
It is an appealing and somewhat remarkable feature of this result that the 
coefficient estimates 8, do not have to be recomputed under the resampling. A 
key role in ensuring this is played by the requirements of (ii). When neither 
condition holds, the conclusion still holds, provided that f* is modified to 
include a term estimating -n-ET=R Vf?( 13*)(13t - 

A 
3*), such as 

-niF1 Et=Rft* T( 13T)( 13t* - 1fT) We omit further discussion of this situation for 
the sake of brevity. 

Although the absence of the need to recompute t is quite convenient, it is 
possible that a method in which 8t is recomputed as part of the resampling 
could yield an improvement in the resulting approximations, as a referee points 
out. We leave this possibility to further research. 

COROLLARY 2.4: Under the conditions of Theorem 2.3, we have that as T co 

p(L[ i7* IZl,...ZT+TrIL[maXk=l .nl/(f k-E(fk))]) 0 

and 

p(L[Wl* IZl,..IZT+T]1,L[mink=l,...,1n 1(k E(fk*))]) ?0 

where Wj* -mink=. 1 (In' k -fk). 

Thus, by comparing VJ to the quantiles of a large sample of realizations of 
V, we can compute a Bootstrap Reality Check p-value for testing that the best 
model has no predictive superiority relative to the benchmark. 

When Q2 is singular, we can partition n1/2(f - E(f *)) as 

'n= lns 2' = nl/2(f-E(f*)) 
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p 
such that 2n-A2"1, -- 0, where 2'in iS 11 X 11 -1 12 =l2o$ 0~Y22fl S 12 X 11 
and A is a finite 12 x 12 matrix. Then Q has the form 

LA Th AQ11 A' 

where 21n => N(O, 21l). Corollary 2.4 continues to hold because, e.g., maxk. 1 
n112(fk - E(fk*)) = max[2] = max[(2'l', 2-2)'] = max[(2ln, (A--1 + (2'2n - 

A Z1n))] = v(z1n,(z2n --AZ1)), say, which is a continuous function of its 
arguments. Straightforward arguments parallel to those of Theorem 2.3 and 
Corollary 2.4 show that the probability law of VJ* = v(z ,(*n4, ( -Ajzn)) 
coincides with that of V(-1 n , (-2n -A1n )). 

The test's level can be driven to zero at the same time the power approaches 
one, as our test statistic diverges at rate n112 under the alternative: 

PROPOSITION 2.5: Suppose that n1/2(f1 - E(ff1j)) => N(O, Woll) for WoHl ? 0 (e.g. 
Assumption A. 1(a) or A. 1(b) of the Appendix holds), and suppose that E(ff1) > 0 
and, if 1 > 1, E(f1j) > E(fk*), for all k = 2,...,1. 

Then for any 0<c<E(fi*), P[1> >n1/2c] >1 asT--oo. 

2.c Extensions and Variations 

We now discuss some of the simpler extensions of the preceding results. 
First, we let the model selection criterion be a function of a vector of 

averages. Examples are the prediction sample R2 for evaluating forecasts or the 
prediction sample Sharpe ratio for evaluating investment strategies. 

In this case we seek to test the null hypothesis 

HO: maxk= . g(E[h* ) < g(E[h* 

where g maps U (c 9R'm) to 9A, with the random m-vector h* hk(Z,3*) 
k = 0, ... , 1. We require that g be continuously differentiable on U, such that its 
Jacobian, Dg, is nonzero at E[h*] E U, k = 0, ... ,1. 

Relevant sample statistics are fk -g(hk) -g(ho), where ho and hk are m x 1 
vectors of averages computed over the prediction sample for the benchmark 
model and the kth specification respectively, i.e., hk -n Et-R hk t+7, hk,t+7- 
hk(Zt?7,f3t), k=0,...,1. Relevant bootstrapped values are, for k =,. ., 1, 
fk -g(h*k) -g(h*), with h* n1EtRh*k ?, where h*? t hk(Z(t)?, f0(t)), 
t=R,...,T. 

Let f be the 1 x 1 vector with elements fk' let f * be the 1 x 1 vector with 
elements fk* and let ,* be the 1 x 1 vector with elements *- g(E[h*]) - 
g(E[h* ]), k =1,... , 1. Under asymptotic normality, application of the mean 
value theorem gives 

. n 1 ,2 
.-j* =>NO 



DATA SNOOPING 1107 

for suitably redefined f2. A version of Proposition 2.2 now holds with E(fk*) 
replaced by I4k and F replaced by H E(Dh(Z, f *)), where Dh is the Jacobian 
of h with respect to ,3. To state analogs of previous results, we modify 
Assumption A. 

ASSUMPTION A: Assumption A holds for h replacing f. 

COROLLARY 2.6: Let g: U --> 9 (U c a9m) be continuously differentiable such 
that the Jacobian of g, Dg, has full row rank one at E[h*'f E U, k = 0,.. ., 1. 
Suppose either: (i) Assumptions A' and B hold and there are no estimated 
parameters; or (ii) Assumptions A', B, and C hold, and either: (a) H = 0 and 
q= cn - for constants c > 0, 0 < y < 1 such that (n Ye/R)loglog R -- 0 as 
T > oo for some e > 0; or (b) (n/R)log log R -O 0 as T > oo. Then for f * computed 
using P&R's stationary bootstrap, as T -- co 

p(L[n/2 (f * -) I Zl, ... .ZT+TI, L[n1/2(' ,)]) 0. 

Using the original definitions of VJ* and WJ* in terms of fk and fk* gives the 
following corollary. 

COROLLARY 2.7: Under the conditions of Corollary 2.6, we have that as T oo, 

p(L[VI* IZl ...IZT+? L[maxkl.1n1/2(fk- A*k)]) ? 

and 

p L[Wl* I Z11 *... ZT+ 1L[mink=l.jn1/2(k - i4)]) ?. 

As before, the test can be performed by comparing VJ to the order statistics of 
J7*j. Again, the test statistic diverges to infinity at rate n'12 under the alterna- 
tive. 

PROPOSITION 2.8: Let f, g*, and Q be as defined above. Suppose that n1/2(f1- 

g u N(O, Wc) for Wc ? 0, and suppose that g* > 0 and, if 1 > 1, g1 > g*k for 
all k =2, ... 1. 

Then for any 0 < c < I*, P[V, > n'12c] 1 as T- oo. 

Throughout, we have assumed that 8, is updated with each new observation. 
It is easily proven that less frequent updates do not invalidate our results. The 
key condition is the asymptotic normality of n1/2(f - ,u*), which holds with less 
frequent updates, as West (1994) discusses. 

Indeed, the estimated parameters need not be updated at all. If the in-sample 
estimate f3R is applied to all out-of-sample observations, the proofs simplify 
significantly. (Also, inferences may then be drawn conditional on f3R, which only 
entails application of part (i) of Theorem 2.3 or Corollary 2.6.) Application of an 
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in-sample estimate to a "hold-out" or "test" dataset is common practice in 
cross-section modeling. It is easily proven that the Monte Carlo and Bootstrap 
Reality Check methods apply directly. For example, one can test whether a 
neural network of apparently optimal complexity (as determined from the 
hold-out set) provides a true improvement over a simpler benchmark, e.g., a 
zero hidden unit model. Applications to stratified cross-section data require 
replacing stationary a-mixing with suitable controlled heterogeneity assumptions 
for independent not identically distributed data. Results of Goncalves and 
White (1999) establishing the validity of the P &R's stationary bootstrap for 
heterogenous near epoch dependent functions of mixing processes, analogous to 
results of Fitzenberger (1997) for the moving blocks bootstrap with heteroge- 
neous a-mixing processes, suggest that this should be straightforward. 

Cross-validation (Stone (1974, 1977)) represents a more sophisticated use of 
"hold-out" data. It is plausible that our methods may support testing that the 
best cross-validated model is no better than a given benchmark. A rigorous 
analysis is beyond our current scope, but is a fruitful area for further research. 

Our results assume that f3 always uses all available data. In applications, 
"rolling" or "moving" window estimates are often used. These construct f3 from 
a finite length window of the most recent observations. The use of rolling/mov- 
ing windows also has no adverse impact. Our results apply immediately, because 
the parameter estimate is now a function of a finite history of a mixing process, 
which is itself just another mixing process, indexed by t. The estimation aspect 
of the analysis thus disappears. 

Typically, rolling/moving window estimates are used to handle nonexplosively 
nonstationary data. The results of Goncalves and White (1999) again suggest 
that it should be straightforward to relax the stationarity assumption to one of 
controlled heterogeneity. In the rolling window case, there is again no necessity 
of dealing explicitly with estimation aspects of the problem. 

A different type of nonstationarity important for economic modeling is that 
arising in the context of cointegrated processes (Engle and Granger (1987)). 
Recent work of Corradi, Swanson, and Olivetti (1998) shows how the present 
methods extend to model selection for cointegrating relationships. 

Our use of the bootstrap has been solely to obtain useful approximations to 
the asymptotic distribution of our test statistics. As our statistics are nonpivotal, 
we can make no claims as to their possible higher order approximation proper- 
ties, as can often be done for pivotal statistics. Nor does there appear to be any 
way to obtain even an asymptotically pivotal statistic for the extreme value 
statistics of interest here. Nevertheless, recentering and rescaling may afford 
improvements. We leave investigation of this issue to subsequent research. 

3. IMPLEMENTING THE BOOTSTRAP REALITY CHECK 

We now discuss step-by-step implementation of the Bootstrap Reality Check, 
demonstrating its simplicity and convenience. As we show, the Bootstrap Reality 
Check is especially well-suited for recursive specification searches of the sort 
typically undertaken in practice. 
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We suppose that set of n prediction observations, t = R,..., T, is given, and 
that the performance/selection criterion has been decided upon. We also 
assume that a method for generating a collection of 1 model specifications has 
been specified. 

We next specify the number of resamples, N, and the smoothing parameter, 
q = qn. As N determines the accuracy of the p-values estimated, this should be a 
moderately large number, say 500 or 1000. The time required for resampling 
increases linearly with N on a serial computer, but resampling can proceed 
simultaneously on a parallel computer. Dependence in {Zt} is accomodated by 
q; the more dependence, the smaller q should be. If {fft*j, is a martingale 
difference sequence (at least under the null), then set q to 1. More generally, q 
can be determined in a data dependent manner, e.g., in a manner analogous to 
that analyzed by Hall, Horowitz, and Jing (1995). For concreteness and simplic- 
ity, suppose a satisfactory value for q is specified a priori, say q = .1. 

Next we apply P&R's stationary bootstrap to generate N sets of random 
observation indexes of length n, {Oi(t), t = R, ..., T}, i = 1,..., N. These indexes 
are generated once and for all at the outset. 

Significantly, the only information required to generate the resampling in- 
dexes is R, T, q, N, an agreed upon random number generator (RNG), and the 
RNG seed. As we discuss further below, this enables the Bootstrap Reality 
Check to\be carried out by researchers at separate locations and at separate 
times. Further, researchers do not need to share the n X 1 matrix of data 
[fk, t ], which might easily be unavailable. Only the scalars V,, VI*, i = 1,..., N 
are required. The data storage and manipulation requirements for this are 
proportional to 1, compared to the 12 requirements for the Monte Carlo 
method. 

The specification search can be conveniently done in a simple recursive 
manner. First, compute parameter estimates and performance values for the 
benchmark model, say h0 t+1 -(Yt? -X0?1 f- , )t (t =R,.. .,T). Then com- 
pute parameter estimates and performance values for the first model, hl1 =t+ 

-(yt+l -X1 t+l .1 t) 2. From these form f1 t + =h1 = h -ho?t+1 and f1= 
n Et=R fl,t+ 1 Using the P&R indexes we also form f_*i = t=R fl Oi(t)+ P 

i= 1, ..., N. Now set 1=V = n = n i/2(* 1), i = 1,..., N. Inferences 
for the first model result by comparing the sample value of V, to the percentiles 
of V1,i. 

For the second model, compute h21 - -(y1 1 -X2?1fl2,)2, form f2,t+1 

=h2t+1 -ho0t+1, f2 =-n E=R f2,t+l, and i = n 1ET=Rf2 i(t)+ 1* Then set 

V2 = maxfn1/2I2, V1}, and 

V2*i= max{nl/2 (, i -1f2 )'1, i } (i = 1,..., N). 

To test whether the better of the two models beats the benchmark, compare the 
sample value of V2 to the percentiles of V2*,. 



1110 HALBERT WHITE 

Proceed recursively in this manner for k = 3,..., 1, testing whether the best of 
the k models analyzed so far beats the benchmark by comparing the sample 
value of 

Vk = maxfn/2fk, Vk} 

to the percentiles of 

Vk* i= max n /(fk* i fk) ,VFk_ 1, i; (i 1,.. N). 

Specifically, denote the sorted values of Vj* (the order statistics) as Vi* 
7*(2) ... J*, Vl(N). Find M such that V'*1M) < VJ < V,*(M+ 1). Then a simple version 

of the Bootstrap Reality Check p-value is 

PRC = 1- M/N. 

This value can be refined by interpolation or by fitting a suitable density tail 
model to the order statistics and obtaining the Bootstrap Reality Check p-value 
from the fitted model. 

The recursions given for Vk and Vk*i make it clear that to continue a 
specification search using the Bootstrap Reality Check, it suffices to know Vl- 1, 
Vi i = 1,..., N, and the P&R indexes Oi(t). For the latter, knowledge of 
R, T, q, N, the RNG, and the RNG seed suffice. Knowing or storing [fk t+r] for 
k < 1 is unnecessary, nor do we need to compute or store 721, C, and (in", V1) 
i = 1,..., N. This demonstrates not only a computational advantage for the 
Bootstrap Reality Check over the Monte Carlo version, but also the possibility 
for researchers at different locations or at different times to further understand- 
ing of the phenomenon modeled without needing to know the specifications 
tested by their collaborators or competitors. Some cooperation is nevertheless 
required, as R, T, q, N, the RNG, the RNG seed, and '711"7*1i, i= 1,. ..,N 
must still be shared, along with the data and the specification and estimation 
method for the benchmark model. 

Subsequent specification searches can potentially contribute to understanding 
in two different ways. First, a better specification may be discovered; second, the 
p-values associated with the current best may change. The first possibility is 
precisely the direction in which the hope for scientific advances lies; this is Jvhat 
motivates economists and others to continually revisit the available data. It 
might be thought, however, that danger lies in the second direction: might not 
the p-values for the current best model erode to insignificance as the search 
continues, casting into doubt a model that actually represents a useful under- 
standing? 

The present theory ensures that when testing a finite number of specifications, 
the Reality Check p-value of a truly best model declines to zero as T grows. 
Nevertheless, when theory does not provide strong constraints on the number of 
plausible specifications, it is natural to consider what happens when 1 grows with 
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T. Even then, it is plausible that the p-value of a truly best model can still tend 
to zero, provided that the complexity of the collection of specifications tested is 
properly controlled. 

The basis for this claim is that the statistic of interest, V,, is asymptotically the 
extreme of a Gaussian process with mean zero under the null. When the 
complexity (e.g., metric entropy or Vapnick-Chervonenkis dimension) of the 
collection of specifications is properly controlled, the extremes satisfy strong 
probability inequalities uniformly over the collection (e.g., Talagrand (1994)). 
These imply that the test statistic is bounded in probability under the null, so 
the critical value for a fixed level of test is bounded. Under the alternative, our 
statistic still diverges, so the power can still increase to unity, even as the level 
approaches zero. 

Precisely this effect operates in testing for a shift in the coefficients of a 
regression model at an unknown point, as, e.g., in Andrews (1993). For this, one 
examines a growing number of models (indexed by the breakpoint) as the 
sample size increases. Nevertheless, power does not erode, but increases with 
the sample size. A rigorous treatment for our context is beyond our present 
scope, but these heuristics strongly suggest that a "real" relationship need not 
be buried by properly controlled data snooping. Our illustrative examples 
(Section 4) provide some empirical evidence on this issue. 

4. AN ILLUSTRATIVE EXAMPLE 

We illustrate the Reality Check by applying it to forecasting daily returns of 
the S & P 500. Index one day ahead (T = 1). We have a sample of daily returns 
from March 29, 1988 through May 31, 1994. We select R = 803 and T = 1560 to 
yield n = 758, covering the period June 3, 1991 through May 31, 1994. Daily 
returns are Yt = (Pt - Pt - i)/Pt- 1, where Pt is the closing price of the S & P 500 
Index on trading day t. 

Figure 1 plots the S&P 500 closing price and returns. The market generally 
trended upward, although there was a substantial pullback and retracement 
from day 600 (August 10, 1990) to day 725 (February 7, 1991). Somewhat higher 
returns volatility occurs in the first half of the period than in the last. This is 
nevertheless consistent with martingale difference (therefore unforecastable) 
excess returns, as the simple efficient markets hypothesis implies. 

To see if excess returns are forecastable, we consider a collection of linear 
models that use "technical" indicators of the sort used by commodity traders, as 
these are easily calculated from prices and there is some recent evidence that 
certain such indicators may have predictive ability (Brock, Lakonishok, and 
LeBaron (1992)) in a period preceding that analyzed here. Altogether, we use 29 
different indicators and construct forecasts using linear models including a 
constant and exactly three predictors chosen from the 29 available. We examine 
all 1 = 29C3 = 3,654 models. Our benchmark model (k = 0) contains only a 
constant, embodying the simple efficient markets hypothesis. 
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FIGURE 1.-S&P500 close and daily returns. 
Notes: The finely dashed line represents the daily close of the S&P500 cash index; values can be 

read from the left-hand axis. The solid line represents daily returns for the S&P500 c4sh index, as 
measured from the previous day's closing price; values can be read from the right-hand axis. 

The indicators consist of lagged returns (Z Yt-1), a collection of 
"momentum" measures (Zt,2,.. ., Zt, 1), a collection of "local trend" measures 

Zt, 12 ..., Z,t15), a collection of "relative strength indexes" (Z416,. ..., Zt, 19), and 
a collection of "moving average oscillators" (Z420, ... ., 29) 

The momentum measures are Zt j = (Pt- 1 -Pt- 1 -j)/Pt- 1 - , j = 2 . 11. The 
local trends (Z4 12, '. Zt, 15) are the slopes from regressing the price on a 
constant and a time trend for the previous five, ten, fifteen, and twenty days. The 
relative strength indexes (Z416, ... . Zt, 19) are the percentages of the previous 
five, ten, fifteen, or twenty days that returns were positive. Each moving average 
oscillator is the difference between a simple moving average of the closing price 
over the previous q1 days and that over the previous q2 days, where q1 < q2, for 
q, = 1,5,10,15, and q2 = 5,10,15,20. The ten possible combinations of q1 and 
q2 yield indicators (Z420, ... Zt, 29) 

For each model, we compute OLS estimates for R = 803 through T = 1560. 
Using a version of recursive least squares (Ljung (1987, Ch. 11)) dramatically 
speeds computation. 

We first consider the (negative) mean squared prediction error performance 
measure fkXt+1= - - * t)2 + - X0 t+ 

8 0 t)2, where Xk, t+ 1 



DATA SNOOPING 1113 

contains a constant and three of the Zr's, and XO, t+1 contains a constant only. 
We also consider directional accuracy, 

lkt [ 
Yt+l 

xk + 3 > ?] 1 
[Yt+l -xo t+l 

/30 t > ?] 

where 1[H] is the indicator function. The average of fk + here is the difference 
between the rate that specification k correctly predicts the market direction and 
that of a naive predictor based on average previous behavior. 

Because of its computational convenience, we apply the Bootstrap Reality 
Check, specifying N = 500 and q = .5 for P &R's stationary bootstrap. Given the 
apparent lack of correlation in the regression errors, this should easily provide 
sufficient smoothing. In fact, Sullivan, Timmerman, and White (1999) find little 
sensitivity to the choice of q in a related context. 

Note that Corollary 2.4 does not immediately apply to the directional accuracy 
case, due to the nonsmoothness of the indicator function and the presence of 
estimated parameters. Nevertheless, reasoning similar to that used in establish- 
ing the asymptotic normality of the least absolute deviations estimator should 
plausibly ensure that the conditions of Proposition 2.2 hold, so that results 
analogous to Corollary 2.4 (and its extension to the case in which F 0 0) can be 
established under similar conditions. Supporting evidence is provided by Monte 
Carlo experiments reported in Sullivan and White (1999), where, for the case of 
directional accuracy with estimated parameters, the Bootstrap Reality Check 
delivers quite good approximations to the desired limiting distribution-better, 
in fact, than for the mean squared prediction error case. This gives us some 
assurance that the directional accuracy case is appropriate here as an illustra- 
tion. 

Examining the numerical results presented in Table I, we see that we fail to 
reject the null that the prediction mse-best model does not beat the efficient 
markets benchmark. This is not surprising, but without the Reality Check, there 
would be no way to tell whether or not we should be surprised by the observed 
superiority of the mse-best model. 

TABLE I 

REALITY CHECK RESULTS: PREDICTION MEAN SQUARED ERROR PERFORMANCE 

Best predictor variables: Z ,5, Z1,13, Z, 25 
Best 

Experiment Benchmark 

RMSE .006373 .006410 
Difference in Prediction Mean Squared Error: .4791E-06 
Bootstrap Reality Check p-value: .3674 
Naive p-value: .1068 

Notes: The "Difference in Prediction Mean Squared Error" is the largest difference in candidate model performance 
relative to the benchmark across all experiments, measured as the difference in (negative) prediction mean squared error 
between the candidate model for a given experiment and that of the benchmark model. The "Bootstrap Reality Check 
p-value" is that corresponding to the best model found. The "Naive p-value" is the Bootstrap Reality Check p-value 
computed by treating the best model as if it were the only model considered. 
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Conducting inference without properly accounting for the specification search 
can be extremely misleading. We call such a p-value a "naive" p-value. Applying 
the bootstrap to the best specification alone yields a naive p-value estimate of 
.1068, which might be considered borderline significant. The difference between 
the naive p-value and that of the Reality Check gives a direct estimate of the 
data-mining bias, which is seen to be fairly substantial here. 

Our results lend themselves to graphical presentation, revealing several inter- 
esting features. Figure 2 shows how the Reality Check p-values evolve. The 
order of experiments is arbitrary, so only the numbers on the extreme right 
ultimately matter. Nevertheless, the evolution of the performance measures and 
the p-value for the best performance observed so far exhibit noteworthy 
features. 

Specifically, we see that the p-value drops each time a new best performance 
is observed, consistent with the occurrence of a new tail event. Otherwise, the 
p-value creeps up, consistent with taking proper account of data re-use. This 
movement is quite gradual, and becomes even more so as the experiments 

0-7T - | - l * ,S *.40.8 

0.6 02 

4 2 * ~~~~~~~~ * "~~I 0.4 

0~~~~~~~~~~~~~~~~~~~ 

C0v t (000 0 J (000 N N 000 N0 0 C 

Experiment Number 

FIGURE 2.-S&P500 MSE experiments. 
Notes: The finely dashed line represents candidate model performance relative to the benchmark, 

measured as the difference in (negative) prediction mean squared error between the candidate 
model for a given experiment and that of the benchmark model. The coarsely dashed line represents 
the best relative performance encountered as of the given experiment number. The values for both 
of these can be read from the left-hand axis. The solid line represents the Bootstrap Reality Check 
p-value for the best model encountered as of the given experiment number. The p-value can be read 
from the right-hand axis. 
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proceed. In fact, the p-value stays flat for modest stretches, due to the relatively 
high correlation among the forecasts. This illustrates that consideration of even 
a large number of models need not lead to dramatic erosion of the Reality 
Check p-value. 

The indicators optimizing directional accuracy differ from those optimizing 
prediction mse. While there is an impressive gain in directional accuracy 
achieved by the best model, as seen in the numerical results of Table II, this is 
not statistically significant. This example dramatically illustrates the dangers of 
data mining. The naive p-value is .0036! Anyone relying on this would be 
seriously misled. Viewing the intermediate results in Figure 3, we observe 
features similar to those already seen in the prediction mse experiments, 
reinforcing our earlier observations. 

Although use of the naive p-value is potentially dangerous, it does have value. 
Specifically, if the naive p-value is large, there is no need to compute the Reality 
Check p-value, as this can only be larger than the naive p-value. But if the naive 
p-value is small, one can then compute the Reality Check p-value in order to 
accurately assess the evidence against the null. 

5. SUMMARY AND CONCLUDING REMARKS 

Data snooping occurs when a given set of data is used more than once for 
purposes of inference or model selection. When such data reuse occurs, there is 
always the possibility that any satisfactory results obtained may simply be due to 
chance rather than to any merit inherent in the method yielding the results. Our 
new procedure, the Reality Check, provides simple and straightforward proce- 
dures for testing the null that the best model encountered in a specification 
search has no predictive superiority over a given benchmark model, permitting 
account to be taken of the effects of data snooping. 

Many fascinating research topics remain. These include permitting the num- 
ber of specifications tested to increase with the sample size, application of the 
method to the results of cross-validation, and the use of recentering, rescaling, 

TABLE II 

REALITY CHECK RESULTS: DIRECTIONAL ACCURACY PERFORMANCE 

Best predictor variables: Z,, 13, Zt, 14, Zt,26 
Best 

Experiment Benchmark 

Percent Correct 54.7493 50.7916 
Difference in Prediction Directional Accuracy: .0396 

Bootstrap Reality Check p-value: .2040 
Naive p-value: .0036 

Notes: The "Difference in Prediction Directional Accuracy" is the largest difference in candidate model performance 
relative to the benchmark across all experiments, measured as the difference in the proportion of correct predicted 
direction between the candidate model for a given experiment and that of the benchmark model. The "Bootstrap Reality 
Check p-value" is that corresponding to the best model found. The "Naive p-value" is the Bootstrap Reality Check p-value 
computed by treating the best model as if it were the only model considered. 
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FIGURE 3.-S&P500 direction experiments. 
Notes: The finely dashed line represents candidate model performance relative to the benchmark, 

measured as the difference in the proportion of correct predicted direction between the candidate 
model for a given experiment and that of the benchmark model. The coarsely dashed line represents 
the best relative performance encountered as of the given experiment number. The valu'es for both 
of these can be read from the left-hand axis. The solid line represents the Bootstrap Reality Check 
p-value for the best model encountered as of the given experiment number. The p-value can be read 
from the right-hand axis. 

or other modifications to achieve improvements in sampling distribution approx- 
imations. 

Simulation studies of the finite sample properties of both the Monte Carlo 
and the Bootstrap versions of the Reality Check are a top priority. A first step in 
this direction is Sullivan and White (1999), in which we find that the tests 
typically (though not always) appear conservative, that test performance is 
relatively insensitive to the choice of the bootstrap smoothing parameter q, and 
that there is much better agreement between actual and bootstrapped critical 
values when the performance measure has fewer extreme outlying values. 

Finally, and of particular significance for economics, finance, and other 
domains where our scientific world-view has been shaped by studies in which 
data reuse has been the unavoidable standard practice, there is now the 
opportunity for a re-assessment of that world-view, taking into account the 
effects of data reuse. Do we really know what we think we know? That is, will 
currently accepted theories withstand the challenges posed by a quantitative 
accounting of the effects of data snooping? A start in this direction is made by 
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studies of technical trading rules (Sullivan, Timmermann, and White (1999)) and 
calendar effects (Sullivan, Timmermann, and White (1998)) in the asset markets. 

Those of us who study phenomena generated once and for all by a system 
outside our control lack the inferential luxuries afforded to the experimental 
sciences. Nevertheless, through the application of such methods as described 
here, we need no longer necessarily suffer the poverty enforced by our previous 
ignorance of the quantitative effects of data reuse. 

Dept. of Economics, University of California, San Diego, and QuantMetrics R&D 
Associates, LLC, 6540 Lusk Blvd., Suite C-157, San Diego, CA 92121, U.S.A.; 
halwhite@earthlink.net 

Manuscript received June, 1997; final revision received July, 1999. 

MATHEMATICAL APPENDIX 

In what follows, the notation corresponds to that of the text unless otherwise noted. For 
convenience, we reproduce West's (1996) assumptions with this notation. 

ASSUMPTION A: 

A.1: In some open neighborhood N around 13*, and with probability one: (a) ft(,8) is measurable 
and twice continuously differentiable with respect to 18; (b) let fit be the ith element of ft; for i = 1. 
there is a constant D < oo such that for all t, sup,8 , Ni f2it( p)/ 88/'1 < m, for a measurable mt, for 
which Em <D. 

A.2: The estimate 6, satisfies .8t-,/ * = B(t)H(t), where B(t) is (I x q) and H(t) is (q x 1), with 

(a) B(t) 'sB, B a matrix of rank Z; (b) H(t) = t-' t= 1 h( 3*) for a (q x 1) orthogonality condition 
hs(1*); (c) Ehs(13*)=O. 

Let 

ft* ft ( /*), ft- a;3( 8*), F- 6.3 

A.3: (a) For somed > 1, 

suptEII[vec(ft),ft*',h1*]Il!4d 

<00, where JJ.II denotesEuclideannorm. (b) 

[yec(ft* - F)', (ft* - Eft*'), h*']' is strong mixing, with mixing coefficients of size - 3d/(d - 1). (c) 

vec(ft* is covariance stationary. (d) Let Fff(j) =E(ft* -Eft*)(ft'-j-Eft*)I, Sff= 

EJ7= I' Fff Q). Then Sff is p.d. 

A.4: R, n oo as T oo, and lim T _> O(n/R) = 7r, 0 < 7T, < oo; T = o o *lim T ,(R/n) = 0. 

A.5: Either: (a) iT= 0 or F = 0; or (b) S is positive definite, where (West (1996, pp. 1071-1072)) 

s [ Sff SfhBB' 
W BShf BShh B m 

We let P denote the probability measure governing the behavior of the time series {Zt}- 
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PROOF OF PROPOSITION 2.1: We first prove (b). Suppose first that Q is positive definite, so that 
for all k, Sk i2Sk > 0, where Sk is an 1 x 1 vector with 1 in the first element, -1 in the kth element 
and zeroes elsewhere. Let Ak = [A >fk]. We seek to show P[n k 2Ak] 1 or equivalently that 
P[U=2A']-*0. As P[U k=2Ac]<k=2P[Ak], it suffices that for any 8>0, max2<k?lP[Ac]< 
8/i for all T sufficiently large. Now 

P[AC] = f-f < O] =P[n /2 (ti-E(fli )-[fk -E(fk )])IS' nSk 

< n112 (E(fk* )E(fli ))IS' Q2Sk I 

By the assumed asymptotic normality, we have the unit asymptotic normality of Zkn1/2( f - 

E(f* )-[k -E(fk* )])/S' QSk, so that 

P[Ac] = P(Zk) +P[Zk <Zk] - P(Zk) 

< ((Zk) + SUPZIP[Zk <Z] - P(z)I, 

where Zk- nl/2(E(f*) -E(fi ))/Sk !Sk. Because E(f1*) > E(fk,) and S <Sk <v00 we have Zk 
-oo as T -*0? and we can pick T sufficiently large that li(Zk) < ?/21, uniformly in k. Polya's 
theorem (e.g. Rao (1973, p. 118)) applies given the continuity of cJ to ensure that for T sufficiently 
large sup, IP[Z, ?z] - l(z)j < 8/21. Hence for all k we have P[Ac ] < 8/i for all T sufficiently 
large, and the first result follows. Replacing Ak with A'k = [f1 > c] and arguing analogously gives (a). 

Now suppose that f2 is positive semi-definite, such that for one or more values of k, Sk fSk = 0. 

Then, redefining Zk to be Zk nl/(f1 - E(fi )- [Ik - E(fk* )]), we have Zk - 0, so that 

P[Ak] =P[lf -fk < 0] 

= P[n1/2(f -E(f) )-[k -E(fk* )]) < n1/2(E(fk) -E(fi))] 

=P[Zk <Zk], 

where now Zk n 1/2( E(fk)- E(f )). Because E(f f ) > E(fk* ) we have Zk < -8 for any 8>0 and 

all T sufficiently large. It follows from Zk -O 0 that for all T sufficiently large we have for suitable 
choice of 8 that P[Zk < Zk] < P[Zk < -8 ] < 8/21, uniformly in k. The results now follow as before. 

Q.E.D. 

PROOF OF PROPOSITION 2.2: By assumption, nll2(f- E(f)) => N(O, Q). As the maximum or 
minimum of a vector is a continuous function of the elements of the vector, the results claimed 
follow immediately from the Continuous Mapping Theorem (Billingsley (1968, Theorem 2.2)). 

Q.E.D. 

The proof of our main result (Theorem 2.3) uses the following result of Politis (1999). 

LEMMA A.1: Let {Xntt} be obtained by P&R's stationary bootstrap applied to random variables 
{Xl. . ., Xn} using smoothing parameter qn, and let a (k) denote the a-mixing coefficients for {X*t} 
under the bootstrap probability conditional on {Xl,...,Xn}. Then: (i) an (k) = n(1 - q )k for all k 
sufficiently large; and (ii) if q,, = cn- for some constants c >0 and 0< y< 1, then a*(k) < 
n exp( - ckn-) for all k 2 nl. 

PROOF: (i) The finite Markov chain {Xntt} has transition probability P*[X,,t+l =x Xt =xi]= 
qn/n for X E={X1 .x*l**,Xi}U{Xi+2,***,Xn} and = 1-q,, +q,,/n for x=xi+1, where P* denotes 
bootstrap probability conditional on {X1,..., X,,}. For all n sufficiently large, the minimum transition 
probability is q,,/n. As the Markov chain has n states, Billingsley (1995, Example 27.6) implies 
a4(k) = n(1 -nq/n)k =n(1 -qn)k. (ii) Substituting qn = cn - gives a*4(k) = n(1 -cn-)k - 

n(1 -cn )(nY/C)ck/tz < n exp(-ckn) Q.E.D. 
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Next, we provide a statement of a version of P &R's (1994a) Theorem 2. 

THEOREM A.2: Let X1, X2,.... be a strictly stationary process, with EIXX16+e < oO for some ? > 0, 
and let /L- E(X1) and X,t - n-1 7t = 1X. Suppose that {XJ} is a-mixing with a(k) = O(kr) for some 
r > 3(6 + 8)/B. Then ,, -limn ,, var(n /2Xn) is finite. Moreover, if oaS > 0, then 

supxlP{nl/2(XI, - A) <x} - 1W(x/To)I -O0, 

where dP is the standard normal cumulative distribution function. Assume that qn -> 0 and nqn - as 
n - oo. Then for {Xt* I obtained by P&R's stationary bootstrap 

supxlP{nl/2( Xn, -X,) <x IX, Xn} -P{n1n2(X -t ) <x}I 0, 

where Xn n -l Xt= - 

Now we can state our next assumption: 

ASSUMPTION B: The conditions of Theorem A.2 hold for each element of ft*. 

Note that Assumption B ensures that the conditions of Theorem A.2 hold for Xt = A'ft* with 
o,, > 0 for every A, A'A = 1, given the positive definiteness of S, thus justifying the use of the 
Cramer-Wold device. 

Our next lemma provides a convenient approach to establishing the validity of bootstrap methods 
in general situations similar to ours. Similar methods have been used by Liu and Singh (1992) and 
Politis and Romano (1992), but to the best of our knowledge, a formal statement of this approach 
has not previously been given. 

LEMMA A.3: Let (2, , P) be a complete probability space and for each c E Q let (A, W, Q.) be a 
complete probability space. For m, n = 1, 2,... and each cv E Q define 

Tm, Z(,c ) = Sin,n (, ) +Xm,n(, a)) + Yn 6W), 

where Sm, n(, ): A -> 9 and Xm,,z(, c): A 9 are measurable-N. Suppose also that for each A E A, 

Sm, n(A, ): Q 2-> and Xm n(A,): Q 2- are measurable-E; Let Yn : Q f-*9 be measurable- such 
that Yn =op(l). 

Suppose there exist random variables Zn(, X) on (A, W, Q,) such that for each A E A, Z,t(A, ): Q 
9 is measurable-Y with P[Cn] -> 1 as n - oo, for 

c {cI Sm, I(, c) =Q Zn(, cv) as m -> oo}, 

where Q denotes convergence in distribution under the measure Q,, with 

sup_ E TIFn(z, -F(z)I = op(l), 

where Fn(z, 0) QI[Z n(, ) < z] for some cumulative distribution function F, continuous on 9. 
Suppose further that P[ Dn ]- 1 as n -> oo, for 

Dnz{ lXm, n(, X) Q.0 as m oo}, 

where -*Q denotes convergence in probability under Q,,,. 
Letm =m= m ? as n oo. Then for all ?> 0, 

P{tvisupz esQu[p_,,z(], -) z]-F(z) I > }0 asn -oo. 

PROOF: The asymptotic equivalence lemma (e.g., White (1984, Lemma 4.7)) ensures that when 

Sm,?n(, a)) =>Q. Z,Z(,a)) and Xm, n(, ) = oQ(1), it follows that Sm, n(, X ) + Xm n(, X ) =*Q Z,(, to), 
which holds for all to in Cn n Dn, P[CII n Dn ] -> 1. It thus suffices to prove the result for 
Tm, ,) = Sm, I k a)) + Yn(c). 
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For notational convenience, we suppress the dependence of m" on n, writing m = m,, through- 
out. Pick > 0, and for 8 to be chosen below define 

Azt, 8-{ oI Itt lyG)1 > 16 I 

Bn, {cIsup IFn(z, ) -F(z) I> 8}. 

Because Yn = op(l) and supIlFn(,w, z) - F(z)l = op(l), we can choose n sufficiently large that 
P[I ] < 8/3, P[Bn 8 ] < 8/3, and P[Cc] < 8/3. 

For tK E K- BZc . n Cj cAZc ) we have IYn(,)l < 8. This and S,, cv( ) < z - 8 imply 

Tm.z,-, ) < z, so that for v EC K,l 

Qco[Sm,n(,c)? <Z8]? <Qc,[Tn(, )? <z]. 

Similarly, IYn( )I < 8 and Tm,z(, c)? < z imply St n(v)?z < Z + 8, so that for cvE Kn 

Qco[Tm,n(, * ) <Z] < Qj[S,n,n(, *v) <Z+8 ]. 

Subtracting QJ Sm, n( , c) < z] from these inequalities for v Ec K,, gives 

Qco[Snz,n(, cv) <z- 8]- Qc[Sm,n(, cv) <z] 

<Qw[Tm,n(, O <Z] - Q [Sn vn( ) <Z] 

< QwO[Sm, cI(v0) <Z+ 8] -QCSm,,z(, cv) <Z]. 

We argue explicitly using the second inequality; an analogous argument applies to the first. From the 
triangle inequality applied to the last expression (which is nonnegative) we have 

Qcj7ITn;,,z(. c) <z] - Q.Sn n(' cv) <z] 

< IQw[Sm, n(Q, W) <Z +v 8]- Fn(z +8,c)I 

+ IQw[Sm n(, cv) <Z] -Fn(z, 1)I 

+ IFJ,(z + 8,c) - F(z + 8)1 + IFn(z,c) - F(z)l 

+ IF(z + 8) - F(z)l. 

For cv E Knt (c C) we can choose n (hence m) sufficiently large that each of the first two terms is 
bounded by 8/7, uniformly in z by Polya's theorem, given the continuity of Fn(, cv) for n sufficiently 
large ensured by the uniform convergence of Fn to F and the continuity of F. For n sufficiently 
large, the next two terms are each bounded by 8/7, uniformly in z for wcvEKn (cBC 8). The 
continuity of F (uniformly) on 9 ensures that we can pick 8, sufficiently small that for n sufficiently 
large, the last term is bounded by 8/7, uniformly in z, so that for cv Kn we have 

Qw[Tm, n( , c) <z] - Q.I Sm,,z( , ) <Z] 58/7, 

uniformly in z. Analogous argument for the lower bound with cv E K,, gives 

-58/7 < QJ[Tm n( , c) <z] - Qco[Sm,n(, cv) <Z], 

so that uniformly in z 

IQw[Tm,J(, cv) <Z] - Q[Svn,n(, z) <z] _ /7. 

By the triangle inequality we have 

supz (E IQ-[T7nn(, c) < z] -F(z)I 

< supz e I IQ.[Tm,n(, c) < Z] -Qco[Sn,n(, cv) ?z]I 

+ supz E= IQw[Snz, I(-, c) < zI-F(Fn(z, 1) 

+ supz e LF?,(z, ) -F(z)I 

< 5?/7 + ?/7 + ?/7 = 
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for all n sufficiently large and w oK,t, which ensures that the second term is bounded by ?/7 

(Kt C C) and that the final term is also bounded by ?/7 (K Cc B, 8). Thus K,, implies 

Lizt a) fjsup_ (E 9|Q.)[ Tm s j-,,a)) < z ]-F( z)I< } 

so that P[Lc]<P[Kc]<P[A n,8]+P[Bn,8]+P[C]c<?? for all n sufficiently large. But 8 is 
arbitrary, and the result follows. Q.E.D. 

PROOF OF THEOREM 2.3: We prove only the result for (ii). That for (i) is immediate. We denote 

ft*+ -f(Z0 (t)1 T 1 *). Adding and subtracting appropriately gives 

T 

n1l/2(f * -) = n- 1/2 ft t _ T 

t=R 

T T 

=n1/2 I ft*+*T -t+ T ] f t + T tt + T] 

t=R t=R 

T 

+n , I ft + T tt +*T] 

t=R 

-ln + ;2nz + ;3nX 

with obvious definitions. Under Assumption B, Theorem A.2 ensures that l,t obeys the conditions 
imposed on\Smn,, in Lemma A.3 with m = n and F(z) = qi(z/o-,). Applying West (1996, p. 1081) to 

;2,t ensures that ;2,z -> 0 a.s., hence in probability-P, satisfying the conditions imposed on Y, in 
Lemma A.3. The result follows from Lemma A.3 if P[ 6n = OQ(l)] -> 1 as n increases, where Q is 
the probability distribution induced by the stationary bootstrap (conditional on Z1,...,ZT+ T) so 
that ;3n satisfies the conditions imposed on Xn, m in Lemma A.3 with m =n. For notational 
convenience, we suppress the dependence of Q on w. 

By a mean value expansion, we have 

T T 
1/ 17*. 3)+~ /2 W+, g;n n- 1/ v 

ft + T * (t 
- 

P*) + n E w t + TX 
t=R t=R 

where Vft. T --f(ZO(t)? TS 13*) and w* 
, 

is the vector with elements 

Wh t + T =( t3)[ft+t +T( 
1 (j), t )/8 3] (1t 1)X 

with (3j),t a mean value lying between P, and 3*. Routine arguments deliver n 1/2_t =RWt+ T= 

oQ(1) with probability-P approaching one. It remains to show that the first term of 6n vanishes in 
probability-Q with probability-P approaching one. 

To proceed, we write 27 R?1 = R +1at-R+1- Vft*+* Pt - 3*), with 8t-R + 1-( - 13)- 
By Chebyshev's inequality 

Q[In12 (y2* -E Q ,2t ))I?8] ?2 varQ[n-1/2 E ( EQ (2*))] 

where EQ and varQ are the expectation and variance induced by probability measure Q. 
We now show that varQ[n 1/2yL n(* - EQ(c2t ))] - .By Proposition 3.1 of P&R (1994a) and 

Lemma A.1, {2t*} is stationary and a-mixing. Standard inequalities for a-mixing processes (e.g., 
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White (1984, Lemma 6.15)) ensure that 

varQ [n 1/2 2 (Y-* - EQ(t*))] 

n-i 
n - 1 

-varQ(Y1 ) + 2 1 (1 - r/n)covQ(YY2 Yl +,T) 
T= 1 

<varQ (Y ) + 2(21/2 + 1)[varQ(Yl )]1/2I 1L22 -E(Yi*)IIQ,r 

n - 1 
n-i~~~~ 

X e ( 1- r/n ) a *C ,)l/2-1/r 
T= 1 

where IIYIIQ,r (EQIYI'r)l/r for some r > 2, and we make use of stationarity in writing the equality. 
Now M21 - E(C )IIQ,r < 2I I1 IIQ,r and [varQ (C )]1/2 = lly * -E(Y )IIQ,2 < 1i1i IIQ,2 < 11i IIQ,r 
(by Jensen's inequality). Thus, 

varQ [n 1/2 EQ(t))] 

t= 1 

< (11YI I IQ,r) 2 1 + 4(2 1/2 + 1) (1 - T/n) a* ( T)l/2-l/r) 

By Minkowski's inequality, 11=7 IIQ,r = IlEj,8j6 IIQ,r < Ejll 8'j IIQ,r, where rjl is the jth compo- 

nent of VfR* T and 8j1 is the jth component of ( iR* - 1*) = ( f - P *) for some randomly chosen 
0, R < 0 < T. Assumption C (law of iterated logarithm) ensures that for all t sufficiently large 
(almost all t, a.a. t) t1"21 iS - 13je I/oy(loglog toj)1/2 < 1 a.s.-P, where (oj is the jth diagonal element 
of G. Thus, I ,jt - 3j* I ?< j(log log R, o)1"2/R1"2 for all t 2 R, a.a. R, a.s.-P, so that 1j I < 
(-(log log R()T/2/Rl/2, a.a. R, a.s.-P, where UT max1(o-. Thus, 1Ii* IIQ,r < 
[T a.a. R, aRs.-P. By Assumption A.3, Il IIQ, r < A < ?? for all j, 
a.s.-P (with r = 4d, d > 1), so that I I Y7 IIQ, r <XA(loglog RU)T/2/R1/2, a.a. R, a.s.-P. 

Because qn = cn -/, we have a*4() < n exp( - cn') for r 2 n1++ > 0. Then 
n-1 

n-1 

l (1 n)- a (,)112-lr 
T= 1 

n'1+8_l n-1 

< E (1-/ln) + 1 (1-T1n)[nexp(-cn--A 1/2-ll/r 

T= 1 T= ny+ 

< (nW+-I1) + (n- n+e)nl/2-l/rexp(-c(1/2 -1/r)n). 

For all n sufficiently large (n -ny+9n1/2-llrexp(-c( /2-1/r)n')< 1, so that 

n-i 

O (1-7Tn) a* 
( 

T) < n . 
= 1 

Collecting together the foregoing inequalities gives that for a.a. R, a.s.-P, 

varQ [n - 1/2 (y* - EQ(2*))] < (1X2 2U2(og log R )/R)(1 + 4(21/2 + 1)n/+ ). 
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By assumption, (nWI /R)(log log R) - 0 as T - oo, ensuring that the variance on the left converges 
to zero as was to be shown. It now follows that, a.s.-P, 

n 

n- 1/2 , (Y-t -EQ(-y* ))-Q(1) 
t= 1 

But n-1/2 t=1EQ(Yt*)=nn1/2 T=RVft12T(nt--y) and the desired result follows if 

T 

n- 1/2 E Vft*+ I( ft - =OP (1). 
t=R 

By West (1996, proof of (a), p. 1051), 

T 
n- 1/2 Vf ( =- = FB[n- 1/2EH(t)] + op(l). 

t=R 

Because n- 1/2 EH(t) = Op(l) (a consequence of West's Lemma 4.1(a) and the Chebyshev inequal- 
ity), the desired result follows immediately when F = 0, and the proof of (ii.a) is complete. 

When F 0 0 we use stronger conditions on n and R to reach the desired conclusion for (ii.b). 
Elementary inequalities give 

T 

In- / F ft* fi ( 8-: 
t=R 

T 

< n /,E 1 Vj*, t + T1 

, 

| t 
8 

*I 

t=R j 

T 
< n-/ , , I Vf.8,t+ TI(Jj (log log R(j)1/2 IRl 

t=R j 

< (n1 1E EIVt'fj*t+Tl (-T(n /R)1/2 (log log R UT)1/, 
t=R j' 

where (-T=maxj(j and the second inequality follows by application of the law of the iterated 

logarithm. It follows from Assumption A.3 that 

n 1E E "Vfj* t + T l=Op (1l) 
t=R j 

by application of the law of large numbers for mixing processes (e.g., White (1984, Corollary 3.48)). 
The result now follows as (n/R) (log log R) = o(1) trivially ensures (n/R)1/2 (log log R-a)1/2 = o(1). 

Q.E.D. 

PROOF OF PROPOSITION 2.4: Immediate from Theorem 2.3 and the Continuous Mapping Theo- 
rem. Q.E.D. 

PROOF OF PROPOSITION 2.5: By definition 

P[ i7 > n12c] =P[maxk= l Inl fk > n/2c]. 

But 

P[maXk= 1.In1/2fk > n112c] 2 P[nl/2f1 > nl1/2c] 

= P[n /2(f1- E(f1* ))/wl, > nl/2(C - E(f1 ))/I11]l 
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where o1l is the 1, 1 element of Q. Hence 

P[V1>n'/2c] > (1- I)(Zn))-SUpzIP[Z, ?<Z]-I(z)l, 

where zn = n /2[c -E(f1* )]/w1l < 0 and Zn =n1/2(f1 - E(f1*))/wll. As in the proof of Proposition 
2.1, we can choose T sufficiently large that cI(zn) < ?/2 as well as sup,IP[Zn < z] - 1(z)I < ?/2, SO 
that for all T sufficiently large P[VI > n1/2c] 2 1 - . Q.E.D. 

PROOF OF COROLLARY 2.6: Let g: xk= 0 U -> 9+ 1 be defined as g(h) = (g(ho), g(h1),...,g(hl)) 
for h0,. E . EU. Let h be the (1 + 1)m x 1 vector h=(h0,hl,...,hj)' and let E(h*)= 
(E(h*), E(h*),...,E(h*))'. A mean value expansion gives 

n1/2(g() - g(E(h*))) = Dg n1/2(7 - E(h*)) 

=Dg* n1/2(h - E(h*)) + (Dg - Dg*)nl/2(h -E(h*)), 

where Dg is the (1 + 1) X m(l + 1) Jacobian matrix structured such that we obtain 

nl/2(g(h) -g(E(h*))) - Dgnl/2(hk - E(h))) 

in the kth row, where Dg is evaluated at a mean value lying between hk and E(h*). Dg* is 
structured analogously but with elements evaluated at the appropriate components of E(h*). 

It follows from Theorem 4.1 of West that n/2 (h- E(h* )) is Op(l), while this and the assumed 
continuity of Dg ensures that Dg - Dg* = op(1). Consequently, 

nl/2(g(h)- g(E(h*))) = Dg* n12(h - E(h)) + op(1). 

It follows from the asymptotic equivalence lemma (e.g. Lemma 4.7 of White (1984)) and (e.g.) 
Corollary 4.24 of White (1984) that 

n1/2(g(h) - g(E(h*))) =* N(O, Dg*QDg*'), 

given that n1/2(h - E(h*)) N(O, Q) as ensured by West (1996, Theorem 4.1). 
The results now follow by arguments identical to those for Proposition 2.2. 

PROOF OF COROLLARY 2.7: Identical to that of Corollary 2.4, mutatis mutandis. Q.E.D. 

PROOF OF COROLLARY 2.8: Identical to that of Proposition 2.5, mutatis mutandis. Q.E.D. 
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