
Exercise 14

Interest Rates in Binomial Grids

Financial Models in Excel, F65/F65D

Peter Raahauge∗

December 5, 2003

The objective with this exercise is to introduce the methodology needed to
price callable bonds. The methodology will be useful for pricing of interest rate
dependent derivatives in general, however. To price a callable bond, we need
to price an American type option. As for stock options, we use binomial grids.
Although the setup looks like the stock option setup at first sight, binomial
grids for interest rate assets are much more complicated than for stocks, and
we will only scratch the surface. If you want to proceed, you might consult
Fixed Income Securities by Bruce Tuckman, Wiley or Fixed-income securities

by Martellini, Priaulet, and Priaulet, 2003, Wiley.

1. Introduction

The issuer of a callable bond have the right to buy back the bond at a given
price, usually whenever he wants.1. I.e., the buyer of the bond receives a bond,
but sells an American put option at the same time. As in the stock option case,
there will not be closed form solutions for American puts. Hence, we must set
up binomial grids for how the interest rate might evolve in the future in order to
determine the probability that the bond will be called in the future.

Interest rate modeling is much more complicated than modeling stock prices,
although it does not seem that way at first sight. I guess you can point to two
main reasons. First of all, our interest rate grid should match the observed term
structure. To do this without any inconsistencies turn out to be rather complicated.
Second, (and somewhat related) interest rates are not random walks like stock
prices. If we observe a relatively high short interest rate today, it is perfectly
legitimate to assume that the interest rate will fall in the future. It all depends on
your “model” for how the interest rate evolves. And there are a lot of competing
models. Some models are special cases of the following specification:

∗Inspiration from Ken Bechmann’s lecture-notes is acknowledged.
1In practice, you can only do it a few dates a year in Denmark, (Bermudan)
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Figure 1: The evolution of one-period interest rates in a two period grid.

rt = rt−τe
mtτ+σt

√
τǫt , ǫt ∼ IID(0, 1),

where τ is the period length which we will set to one to simplify:

rt = rt−1e
mt+σtǫt .

In general, mt and σt can be be complicated functions and different specifications
have been suggested by different authors. Below, we will start out with something
close to the “Black-Derman-Toy”-model where ǫ takes only two values, -1 and 1
with equal probability:

rt =

{

rt−1e
mt+σt , p = 1

2

rt−1e
mt−σt , (1− p) = 1

2

(1)

A central and critical assumption below is that p and (1 − p) are “objective”
probabilities and that the investor is risk neutral. If you do not like this assumption,
you might interpret the probabilities as risk-adjusted probabilities similar to qu and
qd we derived for the stock grids. In interest rate grids, however, it is much harder
to derive qu and qd from observed prices,2 so I will stick to the risk-neutral investor
interpretation.

2. Two period-grids

In the following, let r denote the one period interest rate observed at the date
of the analysis (t = 0) and let ru and rd denote the two possible values of the one
period interest rate observed at time t = 1, see Figure 1.

According to the interest rate model we have assumed, this gives us the following
values

ru = rem1+σ1

rd = rem1−σ1 .
(2)

where the one period rate for the first period r is the observed one-period zero-
coupon interest rate n1.

2This is actually a third reason why interest rate grids are more complicated than stock grids.
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Figure 2: The face value of the normal bond.

Exercise 14.1.a: Assume that the period length of our grids is one
year and assume that the zero-coupon term structure is known, (see
my solution for data on the US term structure).

• Determine ru and rd when m1 = 0, σ1 = 0.3 ∼ 30%, and r = n1.

We are now ready to price bonds with our two-period grid. Assume that we
want to price a two-period bond paying a coupon equal to 5 each year (at time
t = 1 and t = 2) and a principal equal to 100 which is payed at time t = 2.

Since the payoff is not state dependent, there is no reason to use a binomial grid
to price this bond, but let’s do it anyway. From figure 2 you should be able to see
what goes on.3 In the ru-state, the face value of the bond is equal to the cash flow
received at maturity (equals 105) discounted with ru. The FV d is determined in a
similar way. The price of the bond at t = 0 is the expected face value (remember:
risk neutral agents) at time t = 1 plus the coupon discounted with the relevant
interest rate r.

Exercise 14.1.b: Consider a bond similar to the one described above
but with a coupon equal to 1.5 instead. I.e., Cash flow equal to 1.5 at
t = 1 and 101.5 at t = 2.

• Price the bond using the interest rate grid determined in Exercise
14.1.a.

When we know how to price normal bonds in the grid, it is easy to proceed to
callable bonds. Assume that the bond described above can be called at a price of
100. This implies that if the face value of the bond exceeds 100, the issuer will
exercise his American put, and force the owner of the bond to sell it back to the
issuer for a price of 100. As a result, the face value can never exceed 100. Figure
(3) shows how to take this into account when the present value of the bond is
determined.

Exercise 14.1.c: Consider the bond described in Exercise 14.1.b but
now, the bond can be called by the issuer at a price of 100.

3I would prefer to use continuously compounding as we used in our stock-grids, since it makes
it easy to split the grid into smaller periods, but most other text books uses discrete time com-
pounding (including the two references above) so I will just play along...
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Figure 3: The face value of a callable bond.

• Price the bond using the interest rate grid determined in Exercise
14.1.a. and compare with the results in Exercise 14.1.c.

• Set up a grid that explicitly determines the exercise policy for the
issuer.

2.1. Calibration w.r.t. the term structure

It is probably not right to assume that m1 = 0 as we did in the previous section.
One way around the problem would be to estimate a model for how the expected
value of the short rate changes over time. Another approach, which is followed
here, is to calibrate the value of m1 such that the interest rates in our grid fits the
observed term structure in some sense.

Note first that if we combine the two expressions in (2), we get the following
relation:

ru = e2σ1rd.(3)

I.e., if we can just determine rd we also have the “up”-interest rate. If we know
the drift rate m1, we can determine rd with (2), but instead of determining m1

directly, we will use the observed term structure to determine the right level of rd,
(when we have rd, we also have ru by (3)).

We will determine rd by impose that the price of a two period zero coupon
bond implied by our grid should be the same as the one implied by the observed
two-period zero coupon interest rate, n2. Since our investor is risk-neutral by
assumption, we get

1

(1 + n2)2
=

1

(1 + r)

(

1

2

1

1 + ru
+

1

2

1

1 + rd

)

.(4)

The interpretation is straight forward, (I hope!). Another way to get some intuition
is to recognize that discounting with n2 in two periods is the same as discounting
with n1 in the first period and with the forward rate f1,2 between t = 1 and t = 2:
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1

(1 + n1)(1 + f1,2)
=

1

(1 + n1)

(

1

2

1

1 + ru
+

1

2

1

1 + rd

)

⇓

1

1 + f1,2
=

1

2

1

1 + ru
+

1

2

1

1 + rd
.

(5)

The interpretation is that the expected discount factor of our grid for the period
t = 1 to t = 2 should be equal to the discount factor implied by the forward rate.4

Note that if we use (3) to get rid of ru there is only one unknown in (5): rd.
You can find solutions with pen and paper or use the Solver.

Before we move to the first exercise, I would like to introduce notation for the
one-period discount factors:

d =
1

1 + r
, du =

1

1 + ru
, dd =

1

1 + rd
, etc.

With this notation, we can, for instance, get a simpler look for the restriction in
(4),

1

(1 + n2)2
=

1

2
ddu +

1

2
ddd,

which is also easier to work with in Excel.

Exercise 14.1.d: In my solution you will find a relevant value for n2

for the US interest rate.

• Determine the interest rates as in Exercise 14.1.a, but this time
the choice of ru and rd should obey the restrictions in (3) and (4).

• Determine the new prices of the bonds from Exercise 14.1.b and
14.1.c. Compare with previous results.

3. Three periods and multi-period grids

When we constructed the binomial grids for stocks, we used the same method
for constructing the subsequent stock moves as the method used to construct the
moves for the first period. Things are not that simple when it comes to interest
rate grids. Therefore, we will proceed slowly, and consider the three period case
in details. Once we master the technique and ideas behind the three period grid,
where will be no conceptual complexity added when we move to multiple period
grids in general. But the computational complexity will increase, of course. To fix
ideas, Figure 4 show the one-period rates we have to determine. The first three,
r, ru, and rd have already been determined. We are now left with the problem of
determining three (four) new rates.

We will still be using the setup in (1) but whereas we had only one value for the
drift rate m1 and the volatility σ1 at time t = 1, the drift rate and the volatility

4Warning: This intuition will not apply in general to grids with more than two periods
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Figure 4: The evolution of one-period interest rates in a three period
grid.

for the interests of the last period, m2 and σ2, might depend on which state we
are in at time t = 1. For instance, if we observe a high interest rate ru we might
expect that future interest rates will have a stronger tendency to decrease in the
future than if we observed a low interest rate, rd. If this is the case, we might have
something like mu

2 < md
2. Such features might have an unpleasant implication, that

we might not be sure that our interest tree is recombining. To see this, use (1) to
get the expressions for the two interest rates which we would like to combine:

rud = rem1+σ1+mu
2
−σu

2

rdu = rem1−σ1+md
2
+σd

2 .

If we want rud = rdu, certain relationships between the m and the σ-values have
to hold. We will try to avoid this discussion for a moment by assuming that the
volatility is the same for all states, σ, and that the m-values are chosen to make
our trees recombine. As you will see now, we will not pay explicit attention to how
the m-values are chosen.

3.1. Constant volatility

We know that from (3) that ru = e2σrd. Using the same kind of arguments, we
can show that

rdu = e2σrdd and

ruu = e2σrud
(6)

and since we have assumed a recombining tree, rud = rdu, and a constant volatility
we can also express ruu in using only σ and rdd:

ruu = e4σrdd and

Result: We only need to determine rdd. Then, the values for rud = rdu and ruu

follows.

6



Financial Models in Excel Exercise 14

Following the same procedure as before, we will choose rdd such that the price of
a 3 period zero coupon bond is the same whether we use our grid or the observed
zero coupon interest rates to price with. You can express this restriction explicitly
as (I’m using discount factors instead of interest rates to simplify)

1

(1 + n3)3
=

1

4
d · du · duu +

1

4
d · du · dud +

1

4
d · dd · ddu +

1

4
d · dd · ddd(7)

but it is probably easier to impose the restriction using recursive pricing in a grid
in Excel.

Exercise 14.2.a: We will try to expand the grid determined in Exer-
cise 14.1.d with one period. Hence, we use the old values for r, ru, and
rd. To find the new state-dependent interest rates you need n3 which
can be found in my solution. As before, we assume σ = 0.3 = 30%,
(in both states, according to our assumption above). Also we assume
a recombining grid.

• Determine ruu, rud, and rdd according to (6) and (7).

More periods

Once you have tried to expand the grid from two to three periods, there is
nothing new in expanding from three till four periods (check out Figure 5 to figure
out my notation):

• Copy the three period grid of interest rates

• Assume recombining grid and constant volatility over states:

r3u = e2σr2ud

r2ud = e2σru2d

ru2d = e2σr3d

which leaves only one degree of freedom, (I usually consider the lowest one,
here r3d, as the free one).

• Choose r3d such that the price of a zero-coupon bond priced by the grid is
equal to the price implied by the relevant zero-coupon interest rate, here n4.

The last step will have to be solved using the Solver. Once you understand the
method, you should be able to proceed with as many periods as you want.

Exercise 14.2.b: Copy the interest rate grid from Exercise 14.2.a
and maintain σ = 0.3 for all periods. Use n4 from my solution.

• Expand the interest rate grid to a four period grid.

• Expand the interest rate grid to a five period grid.
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Figure 5: The evolution of one-period interest rates in a five period grid.

Exercise 14.2.c: Consider a 5 year bond that pays a coupon at 3 at
t ∈ {1, 2, · · · 5} and a principal at 100 at t = 5.

• Determine the price of the bond.

• Determine the price of the bond if it can be called at a price of
100.

• Determine the exercise policy for the callable bond.

After Exercise 14.2.b you have probably figured out that in order to construct
a 20 period interest rate grid in Excel, you have to put in a lot of work and use a
lot of cells. For each new period, you have to set up a new zero-coupon price grid
and calibrate the level using the Solver.

It would be nice to have a VBA function for constructing these grids. Unfortu-
nately, it is not straight forward to call the Solver from within VBA, as you might
remember.5

However, the finding the right rd, rdd, r3d, r4d, etc. is a well-behaved problem
and we can use the same method we used to program our own “Solver” when we
determined implied volatilities. Check out the relevant Exercise or page 303 in
Benninga if you forgot.

5As noted before, it IS possible, but it is beyond the scope of the course.
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Exercise 14.3 Although the VBA code is relatively simple, (no new
concepts) the first part of the exercise is probably a bit complicated, (I
guess?).

• Program a VBA-function which can determine the binomial inter-
est rate grids of arbitrary size, given the assumptions made above.

Note: Input should be a vector of relevant zero coupon interest
rates and the volatility parameter σ.

• Price a bond with maturity in 20 years, a coupon each year equal
to 3, and a principal at 100 payed at t = 100.

• Price the bond again, but this time it is assumed that the bond
can be called at a price equal to 100.

• Determine the value of the implicit American put due to the
callable-property of the bond.

We will end the mandatory part of the exercise here, but notice that you can
use the grids you have constructed to price all sorts of interest rate dependent
derivatives, like interest rate options, caps, floors etc.

If you are only interested in the stuff relevant for the exam, you should
stop here. I made the rest of the exercise out of my own curiosity, and
I’m not sure it is relevant!

Thank you for attending the course
Good luck

Peter

9
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4. Some Inconsistencies of the Grid, (Optional)

Although the interest rate grids constructed above seem very consistent at first
sight, it is easy to show inconsistencies for grids with more than two periods. For
instance, the interest rates for the period from t = 2 to t = 3 is not consistent with
the forward rate f2,3 for the same period.

r ← f0,1 →r r ← f1,2 →r r ← f2,3 →r r

Time: 0 1 2 3

Figure 6: The forward rate notation.

To show this, we need the probabilities the states at t = 2. Since we have
maintain the assumption of equal probability for “up” and “down”. As a result,
we get the probabilities in Figure 7. Note that the likelihood of the middle state
“ud” is twice as high as the others, since there are two ways of arriving in the
middle state, but only one way of arriving in the others. And since all paths have
the same probability, the result follows. In the three state case, it is still easy
to determine how many paths end up in a given state, but when we consider the
general case, we will have to use some formulas, which are available in Excel.

Now suppose we have a cash-flow at time t = 3 equal to 1, which we would
like to transform into a time t = 2-cash flow. Then, the expected cash flow of the
following two strategies should be the same: 1) Engage in a forward contract at
time t = 0 which transform t = 3 cash flow into t = 2 cash flow with the forward
rate f2,3 or 2) wait until time t = 2, and then discount the future cash flow with
the state-dependent interest rate. We can express the equilibrium condition as
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Figure 7: The probability of different states
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1

1 + f2,3
=

puu

1 + ruu
+

pud

1 + rud
+

pdd

1 + rdd

=
1

4(1 + ruu)
+

1

2(1 + rdu)
+

1

4(1 + rdd)
.

(8)

If the expected cash flows of the two strategies are not the same, we will not be in
equilibrium if the investors are risk-neutral.

Exercise 14.4 Consider the three period interest rate grid deter-
mined in Exercise 14.2.a, and assume that you want to transform a
cash flow at 100 from time t = 3 to t = 2.

• Check if the equilibrium condition in (8) holds. I.e., does both
strategies provide the same expected cash flow at time t = 2?

An explanation

In the Exercise above, you will only find small inconsistencies, but for longer
horizons they will be more significant. The reason for the inconsistencies can best
be seen by considering first how define the implicit forward rates,

(1 + n1)(1 + f1,2)(1 + f2,3) = (1 + n3)
3.(9)

When we constructed our grids, we imposed the same restriction on our r’s, but
since our interest rates are stochastic, we did it in expected values:

E ((1 + r)(1 + r1,2)(1 + r2,3)) = (1 + n3)
3.(10)

where r1,2 denote the stochastic interest rate in our grid.
The problem is, that since our interest rates r1,2 and r2,3 will have positive

correlation: After ru comes ruu or rud which are higher than rdd and rud which
comes after rd. Hence,

E ((1 + r)(1 + r1,2)(1 + r2,3)) > (1 + r)(1 + E(r1,2))(1 + E(r2,3))(11)

since we ignore the positive covariance. By using (9) and (10) we see that (11) can
only hold if E(r1,2) < f1,2 and/or E(r2,3) < f2,3. Which is hopefully what you saw
in the exercise. Note that, E(r1,2) = f1,2 will generally hold, since ru and rd were
constructed E((1+n1)(1+r1,2)) = (1+n2)

2, and since there is only one stochastic
variable, r1,2, there are no covariance to ignore.

5. Playing a little with the volatility assumptions,
(Optional)

Maybe you think that the simple volatility structure chosen above is too simple.
A lot of authors do, and they have proposed a lot of different models which all
imply a specific structure on how volatility parameters depending on which state

11
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we are in. We will not consider these proposals since they will involve a lot of
theory. However, I think it would be nice to play around a little with the volatility
factor.

When we use the volatility parameter σ in restriction (6) to determine ruu, rud,
and rdd, the interpretation of σ is the same as when we use σ in the two-period
grid to determine ru and rd: Given the state we are in, σ is the volatility of next
periods one-period rate. We say that the local volatility is the same all over the
grid.

Another approach would be the following, (we stick to the three period setup to
simplify). Assume that r2,3 will be distributed like

r2,3 = r̄2,3e
ǫ2 ,(12)

where r̄2,3 is the expected value of r2,3. Now, we would like to determine the
volatility parameter σ2 which is used to determine the distance between ruu, rud,
and rdd such that the volatility of ǫ2 match the precision with which we feel we
can predict the interest rate two periods into the future. Let this volatility, the
standard deviation of ǫ2 when predicted from t = 0, be denoted with σ0,2 Notice the
difference between σ2 and σ0,2. The first is a local parameter which tells something
about one-period uncertainty. The latter tells something about the uncertainty
over longer time span, (in this case two periods).

In the data-sheet of my solution and in Figure 8, you will find my shaky attempt
to determine the precision by which we can predict the future one-year US interest
rate. The interpretation of the Figure is this: Next years realized interest rate will
deviate from my prediction with at prediction error with a standard error approx-
imately equal to 33% of the predicted value. If we try to predict the interest rate
two years ahead, we should expect a standard deviation equal to 46%. Intuitively,
this result makes sense. The longer horizon, the lower precision.

As you can see, you should not trust the figures too much as they appear to be
subject to sizable estimation errors. For instance, it seems unrealistic that we can
predict interest rates 5 years ahead better then 3 years ahead.

One interesting feature should be noticed, however. At some point in time, the
volatility in the predictions seems to stabilize. The intuition is this: If you try to
predict interest rates more than 10 years into the future, the observed interest rate
today will not help anything. You might as well predict the long term average and
expect a volatility of your prediction errors to be around 53%. I’m not sure you
would get that result with a constant local volatility parameter. I.e., we might take
the plot as evidence that the local volatility parameter should decrease somewhat,
as longer and longer horizons are considered.

Implementation

Now that we know that distributions of interest rates at time t = 2 should have
an overall volatility of σ0,2 = 0.46 ∼ 46%, we might start wondering how we could
implement this information. Note that we will not change the simplifying structure
of the restrictions in (6). But now, we would like to choose σ2 such that σ0,2 = 0.46.

12
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Figure 8: Volatility of predictions for one year US treasury rates.
The following autoregressive model were used to predict r̄t,t+1: r̄t,t+1 = r̄+αt(r−r̄),
where t is the prediction horizon, r̄ is fixed at the sample average of interest rates,
and r is the observed rate. The decay-parameter were estimated with least square.
The volatility σ0,t is estimated as sample standard deviations of the prediction errors
measured as ǫt = log(rt/r̄t,t+1). Sample used: yearly observations for 1963-2003
used for estimation. The volatility is calculated based on predictions for 1983-2003
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First, we should remember from the formulation in (12), that the volatility
parameter is the standard deviation of the shock ǫ, not the interest rate. To
determine the standard deviation of the shocks, we need to identify them. And
therefore, we need r̄. Fortunately, r̄ is easily calculated:

r̄ = 1
4ruu + 1

2rud + 1
4rdd

= 1
4e4σ2rdd + 1

2e2σ2rdd + 1
4rdd.

Then, the shocks are easily identified,

ǫuu = log(ruu/r̄), ǫud = log(rud/r̄), ǫdd = log(rdd/r̄)

or

ǫuu = log(e4σ2rdd/r̄), ǫud = log(e2σ2rdd/r̄), ǫdd = log(rdd/r̄).

And since the probability of each state is known by assumption, the mean value of
the shocks ǭ is also easily determined:

ǭ = 1
4ǫuu + 1

2ǫud + 1
4ǫdd.

We are now ready to set up the restriction on the standard deviation of the shocks
at t = 2:

σ0,2 =
√

1
4(ǫuu − ǭ)2 + 1

2(ǫud − ǭ)2 + 1
4(ǫdd − ǭ)2.(13)

If we substitute ruu and rud with e4σ2rdd and e2σ2rdd, the restriction in (13) has
only two unknown, σ2 and rdd. As before, we will determine rdd with the restriction
in (7) when we know σ2. But we cannot determine σ2 from (13) before we know rdd

! Hence, we have to ask the Solver in Excel to solve both problems simultaneously.
To do that, we need a little trick.

Solving many equation in one step

Unfortunately, the Solver in Excel cannot handle more than one target cell.
However, with a little trick, you can get the Solver to solve more than one equation
at a time. We need it for the problem above, but it is of course a very general
problem.

Assume that we want to solve the problem above and let e1 be the violation of
the restriction in (7) and let e2 be the violation of the restriction in (13). If you
ask Excel’s solver to minimize the sum of squared errors,

(e1)
2 + (e2)

2,(14)

the lowest possible value is zero, which will only happen if both e1 and e2 are zero
at the same time. Unfortunately, the function is very flat around the solution, and
the solver might have a hard time finding the optimum. To get better solutions, I
suggest you push the “options” button in the Solver interface, and change “Deriva-
tives” from “Forward” to “Central”. Sometimes, “Use automatic scaling” can also
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help. With these changes, it might help to re-run the Solver after you have found
the first solution. Consider also the following trick:

100000000
(

(e1,2)
2 + (e2,3)

2
)

.

Simply multiplying the objective with a high number. This primitive transforma-
tion might also help, since small errors are amplified. (You might get the same
effect by increasing the precision in the Solver option interface.)

Exercise 14.5, (Optional): Consider the same setup in as in Exer-
cise 14.2.a. We will reuse r, ru, and rd.

• Determine the local volatility parameter σ2 for ruu, rud, and rdd

such that the overall volatility of ǫ2 at time t = 2 is equal to the
estimate of 0.46 ∼ 46% while at the same time calibrating the level
(i.e. rdd) to the term structure, (i.e. n3).

Note: In order to impose both the volatility restriction (13) and the

forward rate restriction and the level restriction (7) simultaneously, you

should use the trick in (14) to get only one target cell.
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